Datasheet DS 60S 222625

Features

Arm Cortex®-A72 cores:

Up to 2.2 GHz

Single-threaded cores with 48KB L1 instruction cache and 32 KB L1 data cache

Layerscape® LX2160A has 16 cores, 8 MB L2 cache; LX2120A has 12 cores, 6 MB L2 cache; LX2080A has 8 cores, 8 MB L2 cache

Cache Coherent Interconnect Fabric

Up to 1500 MHz

8 MB Level 3 cache with ECC and On-Chip Memory (OCM) mode

Two 72-bit (64-bit + ECC) 3.2 GT/s DDR4 SDRAM memory controllers with ECC

Datapath acceleration architecture 2.0 (DPAA2)

Packet parsing, classification, and distribution (WRIOP)

Queue and hardware buffer management

Cryptography acceleration (SEC) at up to 50 Gbps

Decompression/compression acceleration (DCE) at up to 100 Gbps

Queue Direct Memory Access (QDMA) engine

Management complex (MC)

2 MB Packet express buffer

L2 Switching (114 Gbps)

24 SerDes lanes at up to 25 Gbps

High-speed peripheral interfaces

Two PCI express Gen 3.0 8-lane controllers supporting SR-IOV

Four PCI express Gen 3.0 4-lane controllers Four serial ATA (SATA 3.0) controllers Ethernet interfaces supporting IEEE 1588

Up to 18 Ethernet MACs

Support for 10G-SXGMII (USXGMII)

Support for SGMII (and 1000Base-KX)

Support for XFI, SFI, and 10GBase-KR

Support for CAUI4 (100G), 50GAUI-2 (50G), 25G- AUI (25G)

Support for XLAUI4 (and 40GBase-KR4) for 40G

Support for two RGMII parallel interfaces

Energy-efficient support (802.3az)

Additional peripheral interfaces

Two USB 3.0 controllers with integrated PHY

Two enhanced secure digital host controllers

Two Controller Area Network (CAN) modules, optionally supporting Flexible Data rate

Flexible Serial Peripheral Interface (FlexSPI) and three

Serial Peripheral Interface (SPI) controllers

Eight I2C controllers

Four UARTs

General Purpose IO (GPIO)

Support for hardware virtualization and partitioning enforcement (Arm MMU-500)

QorlQ platform trust architecture 3.0 with 256 KB on-chip RAM for trusted accesses

Global interrupt controller (Arm GIC-500)

Two Flextimers, one secure watchdog timer and one nonsecure watchdog timer

Debug supporting run control, data acquisition, high-speed trace, and performance/event monitoring

Support for Voltage ID (VID) for yield improvement

Teledyne Confidential; Commercially Sensitive Business Data

1 INTRODUCTION

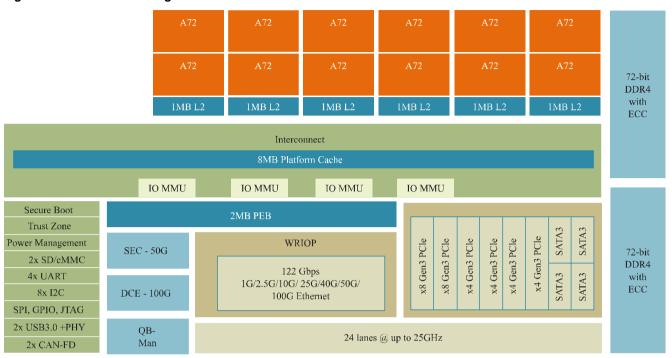
The Layerscape® LX2160A processor is built on software-aware, core-agnostic DPAA2(*) architecture, which delivers scalable acceleration elements sized for application needs, unprecedented efficiency, and smarter, more capable networks. When coupled with ease-of-use facilities such as real-time monitoring and debug, virtualization, and software management utilities, the available toolkits allow for both hardware and software engineers to bring a complete solution to market faster than ever.¹

The device integrated multicore processor combines sixteen Arm Cortex®-A72 processor cores with high-performance data path acceleration logic and network and peripheral bus interfaces required for networking, storage, telecom/datacom, wireless infrastructure, automotive, and military/aerospace applications.

The device processor is supported by a consistent API that provides both basic and complex manipulation of the hardware peripherals in the device, releasing the developer from the classic programming challenges of interfacing with new peripherals at the hardware level.

72-bit DDR4 with 1MB L2 ECC Interconnect 8MB Platform Cache IO MMU IO MMU IO MMU IO MMU Secure Boot Trust Zone SATA3 SATA3 WRIOP x4 Gen3 PCle Power Management x8 Gen3 PCle x4 Gen3 PCle x4 Gen3 PCle x4 Gen3 PCle x8 Gen3 PCle SEC - 50G 72-bit 2x SD/eMMC DDR4 122 Gbps 4x UART SATA3 SATA3 with 1G/2.5G/10G/ 25G/40G/50G/ **ECC** 8x I2C DCE - 100G 100G Ethernet SPI, GPIO, JTAG 2x USB3.0 +PHY QB-24 lanes @ up to 25GHz Man 2x CAN-FD

Figure 1. LX2160A Block diagram


The LX2120A integrated multicore processor combines twelve Arm® v8 A72 cores. This figure shows the major functional units within the chip

^(*) DPAA2 architecture is an evolution and extension of DPAA, a comprehensive architecture which integrates all aspects of packet processing in the SoC, addressing issues and requirements resulting from the multicore nature of QorlQ™ SoCs.

Teledyne Confidential; Commercially Sensitive Business Data

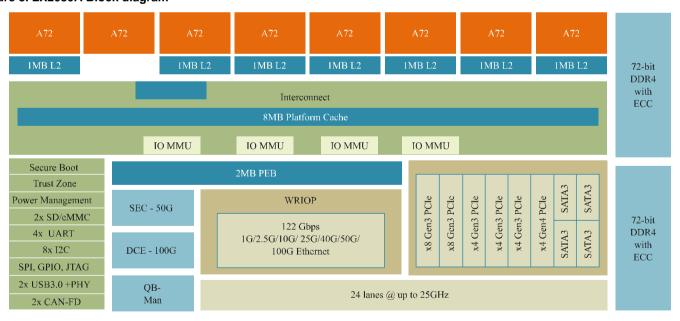

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers

Figure 2. LX2120A Block diagram

The LX2080A integrated multicore processor combines eight Arm® v8 A72 cores. This figure shows the major functional units within the chip.

Figure 3. LX2080A Block diagram

Teledyne Confidential; Commercially Sensitive Business Data

1.1 Device selection

This table shows how to set the TEST_SEL_B and the cfg_svr[0:1] pins to select between LX2160A, LX2120A, and LX2080A.

Table 1. Device Personality Selection

Personality	TEST_SEL_B	cfg_svr0	cfg_svr1
		(primary signal XSPI1_A_CS0_B)	(primary signal XSPI1_A_CS1_B)
LX2160A	1	1	1
LX2120A	0	1	1
LX2080A	1	0	1

2 PIN ASSIGNMENTS

2.1 1517 ball layout diagrams

This figure shows the complete view of the LX2160A BGA ball map diagram. Figure 5, Figure 6, Figure 7, and Figure 8 show quadrant views.

Teledyne Confidential; Commercially Sensitive Business Data

Figure 4. Complete BGA Map for the LX2160A

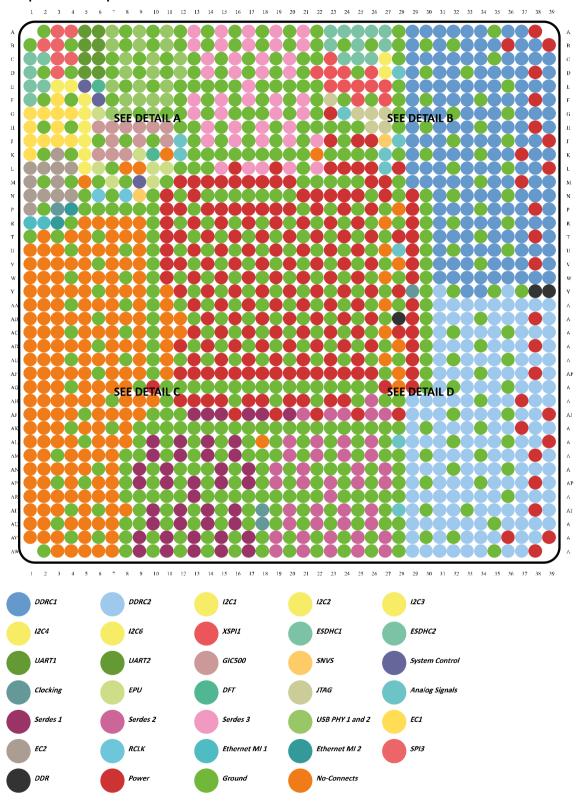


Figure 5. Detail A

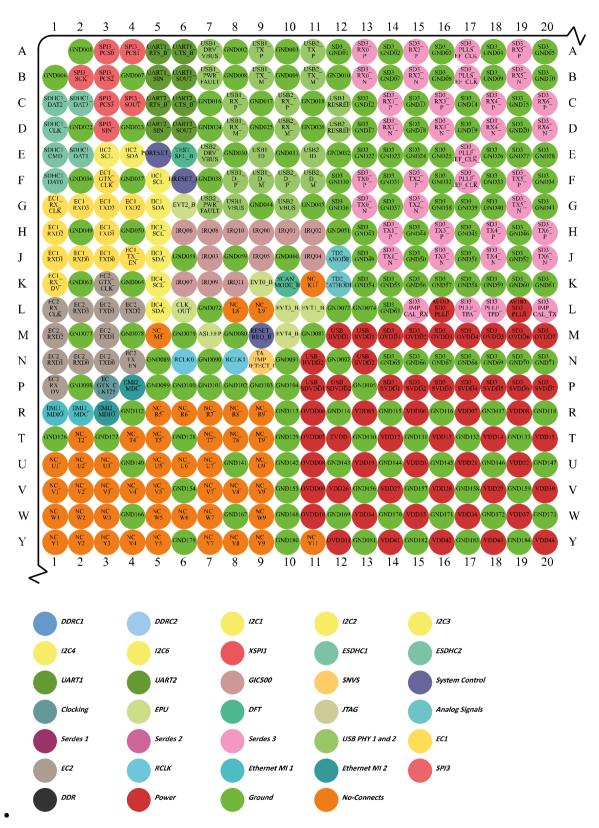


Figure 6. Detail B

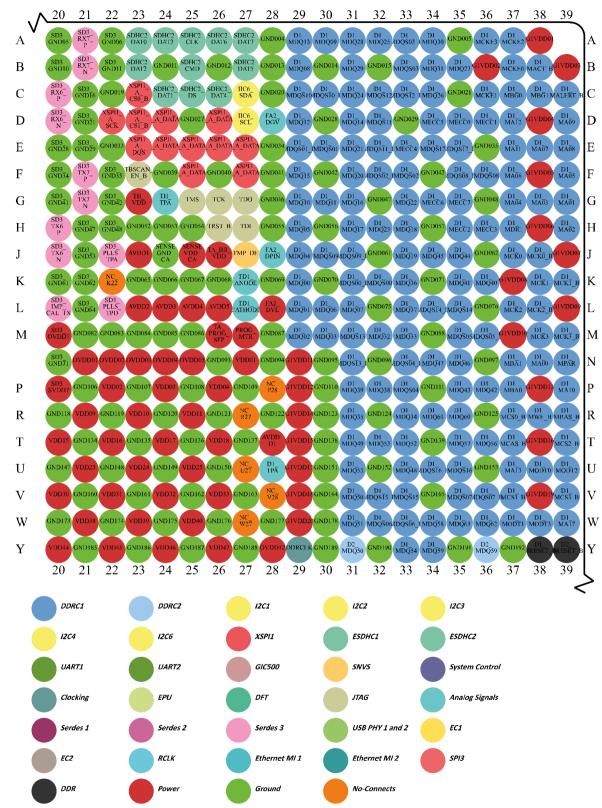


Figure 7. Detail C

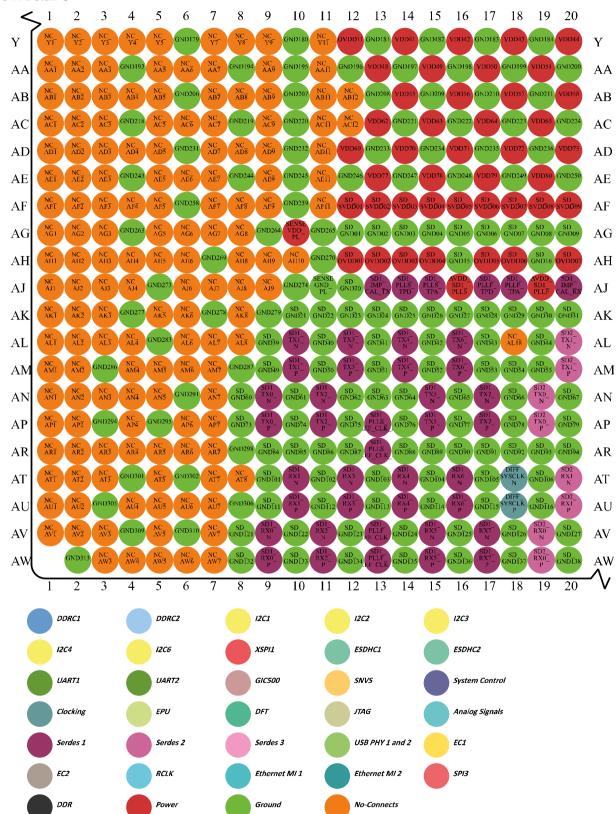
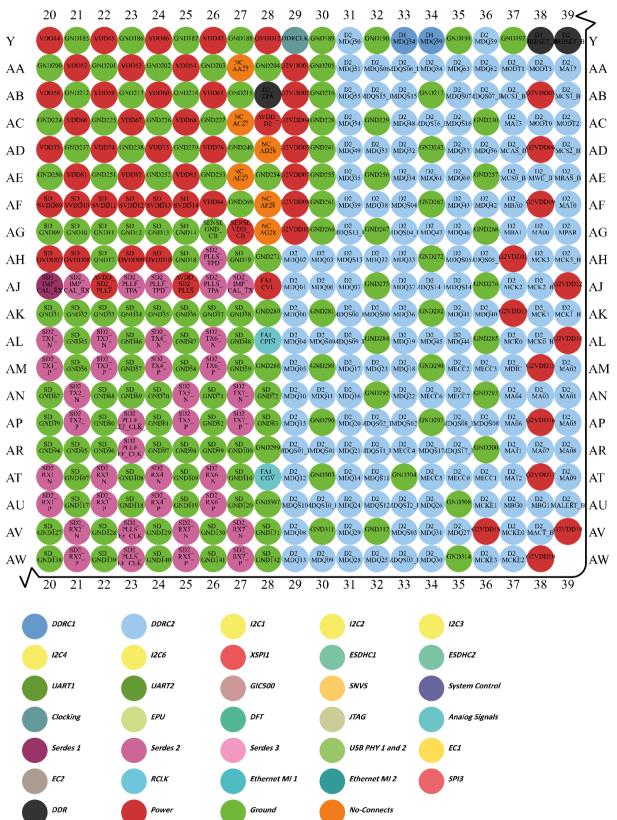



Figure 8. Detail D

2.2 Pinout list

This table provides the pinout listing for the LX2160A by bus. Primary functions are **bolded** in the table.

Table 2. Pinout list by bus

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
	DDR SDRAM Memor	ryInterface1			l
D1_MA00	Address	N38	0	G1V _{DD}	
D1_MA01	Address	G39	0	G1V _{DD}	
D1_MA02	Address	H39	0	G1V _{DD}	
D1_MA03	Address	G38	0	G1V _{DD}	
D1_MA04	Address	G37	0	G1V _{DD}	
D1_MA05	Address	F39	0	G1V _{DD}	
D1_MA06	Address	F37	0	G1V _{DD}	
D1_MA07	Address	E38	0	G1V _{DD}	
D1_MA08	Address	E39	0	G1V _{DD}	
D1_MA09	Address	D39	0	G1V _{DD}	
D1_MA10	Address	P39	0	G1V _{DD}	
D1_MA11	Address	E37	0	G1V _{DD}	
D1_MA12	Address	D37	0	G1V _{DD}	
D1_MA13	Address	U37	0	G1V _{DD}	
D1_MA17	Address	W39	0	G1V _{DD}	
D1_MACT_B	Activate	B38	0	G1V _{DD}	
D1_MALERT_B	Alert	C39	I	G1V _{DD}	1, 16
D1_MBA0	Bank Select	P37	0	G1V _{DD}	
D1_MBA1	Bank Select	N37	0	G1V _{DD}	
D1_MBG0	Bank Group	C37	0	G1V _{DD}	
D1_MBG1	Bank Group	C38	0	G1V _{DD}	
D1_MCAS_B	Column Address Strobe / MA[15]	T37	0	G1V _{DD}	
D1_MCK0	Clock	J37	0	G1V _{DD}	
D1_MCK0_B	Clock Complement	J38	0	G1V _{DD}	
D1_MCK1	Clock	K38	0	G1V _{DD}	
D1_MCK1_B	Clock Complement	K39	0	G1V _{DD}	
D1_MCK2	Clock	L37	0	G1V _{DD}	
D1_MCK2_B	Clock Complement	L38	0	G1V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D1_MCK3	Clock	M38	0	G1V _{DD}	
D1_MCK3_B	Clock Complement	M39	0	G1V _{DD}	
D1_MCKE0	Clock Enable	B37	0	G1V _{DD}	2
D1_MCKE1	Clock Enable	C36	0	G1V _{DD}	2
D1_MCKE2	Clock Enable	A37	0	G1V _{DD}	2
D1_MCKE3	Clock Enable	A36	0	G1V _{DD}	2
D1_MCS0_B	Chip Select	R37	0	G1V _{DD}	
D1_MCS1_B	Chip Select	V37	0	G1V _{DD}	
D1_MCS2_B	Chip Select / MCID[0]	T39	0	G1V _{DD}	
D1_MCS3_B	Chip Select / MCID[1]	V39	0	G1V _{DD}	
D1_MDIC	Driver Impedence Calibration	H37	Ю	G1V _{DD}	3
D1_MDQ00	Data	K29	Ю	G1V _{DD}	
D1_MDQ01	Data	L29	Ю	G1V _{DD}	
D1_MDQ02	Data	M29	Ю	G1V _{DD}	
D1_MDQ03	Data	M30	Ю	G1V _{DD}	
D1_MDQ04	Data	J29	Ю	G1V _{DD}	
D1_MDQ05	Data	H29	Ю	G1V _{DD}	
D1_MDQ06	Data	L30	Ю	G1V _{DD}	
D1_MDQ07	Data	L31	Ю	G1V _{DD}	
D1_MDQ08	Data	B29	Ю	G1V _{DD}	
D1_MDQ09	Data	A30	Ю	G1V _{DD}	
D1_MDQ10	Data	G29	Ю	G1V _{DD}	
D1_MDQ11	Data	G30	Ю	G1V _{DD}	
D1_MDQ12	Data	D29	Ю	G1V _{DD}	
D1_MDQ13	Data	A29	Ю	G1V _{DD}	
D1_MDQ14	Data	D31	Ю	G1V _{DD}	
D1_MDQ15	Data	F29	Ю	G1V _{DD}	
D1_MDQ16	Data	G31	Ю	G1V _{DD}	
D1_MDQ17	Data	H31	Ю	G1V _{DD}	
D1_MDQ18	Data	H33	Ю	G1V _{DD}	
D1_MDQ19	Data	J33	Ю	G1V _{DD}	
D1_MDQ20	Data	F31	Ю	G1V _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D1_MDQ21	Data	E31	Ю	G1V _{DD}	
D1_MDQ22	Data	G33	Ю	G1V _{DD}	
D1_MDQ23	Data	H32	Ю	G1V _{DD}	
D1_MDQ24	Data	C31	Ю	G1V _{DD}	
D1_MDQ25	Data	A32	Ю	G1V _{DD}	
D1_MDQ26	Data	C34	Ю	G1V _{DD}	
D1_MDQ27	Data	B35	Ю	G1V _{DD}	
D1_MDQ28	Data	A31	Ю	G1V _{DD}	
D1_MDQ29	Data	B31	Ю	G1V _{DD}	
D1_MDQ30	Data	A34	Ю	G1V _{DD}	
D1_MDQ31	Data	B34	Ю	G1V _{DD}	
D1_MDQ32	Data	M32	Ю	G1V _{DD}	
D1_MDQ33	Data	M33	Ю	G1V _{DD}	
D1_MDQ34	Data	R33	Ю	G1V _{DD}	
D1_MDQ35	Data	R31	Ю	G1V _{DD}	
D1_MDQ36	Data	K33	Ю	G1V _{DD}	
D1_MDQ37	Data	L33	Ю	G1V _{DD}	
D1_MDQ38	Data	P32	Ю	G1V _{DD}	
D1_MDQ39	Data	P31	Ю	G1V _{DD}	
D1_MDQ40	Data	K36	Ю	G1V _{DD}	
D1_MDQ41	Data	K35	Ю	G1V _{DD}	
D1_MDQ42	Data	P36	Ю	G1V _{DD}	
D1_MDQ43	Data	P35	Ю	G1V _{DD}	
D1_MDQ44	Data	J35	Ю	G1V _{DD}	
D1_MDQ45	Data	J34	Ю	G1V _{DD}	
D1_MDQ46	Data	N35	Ю	G1V _{DD}	
D1_MDQ47	Data	N34	Ю	G1V _{DD}	
D1_MDQ48	Data	U33	Ю	G1V _{DD}	
D1_MDQ49	Data	T31	Ю	G1V _{DD}	
D1_MDQ50	Data	V31	Ю	G1V _{DD}	
D1_MDQ51	Data	W31	Ю	G1V _{DD}	
D1_MDQ52	Data	T33	Ю	G1V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D1_MDQ53	Data	T32	Ю	G1V _{DD}	
D1_MDQ54	Data	Y33	Ю	G1V _{DD}	
D1_MDQ55	Data	U31	Ю	G1V _{DD}	
D1_MDQ56	Data	T36	Ю	G1V _{DD}	
D1_MDQ57	Data	T35	Ю	G1V _{DD}	
D1_MDQ58	Data	W34	Ю	G1V _{DD}	
D1_MDQ59	Data	Y34	Ю	G1V _{DD}	
D1_MDQ60	Data	R35	Ю	G1V _{DD}	
D1_MDQ61	Data	R34	Ю	G1V _{DD}	
D1_MDQ62	Data	W36	Ю	G1V _{DD}	
D1_MDQ63	Data	W35	Ю	G1V _{DD}	
D1_MDQS00	Data Strobe	K32	Ю	G1V _{DD}	
D1_MDQS00_B	Data Strobe	K31	Ю	G1V _{DD}	
D1_MDQS01	Data Strobe	E30	Ю	G1V _{DD}	
D1_MDQS01_B	Data Strobe	E29	Ю	G1V _{DD}	
D1_MDQS02	Data Strobe	F33	Ю	G1V _{DD}	
D1_MDQS02_B	Data Strobe	F32	Ю	G1V _{DD}	
D1_MDQS03	Data Strobe	B33	Ю	G1V _{DD}	
D1_MDQS03_B	Data Strobe	A33	Ю	G1V _{DD}	
D1_MDQS04	Data Strobe	P33	Ю	G1V _{DD}	
D1_MDQS04_B	Data Strobe	N33	Ю	G1V _{DD}	
D1_MDQS05	Data Strobe	M35	Ю	G1V _{DD}	
D1_MDQS05_B	Data Strobe	M36	Ю	G1V _{DD}	
D1_MDQS06	Data Strobe	W32	Ю	G1V _{DD}	
D1_MDQS06_B	Data Strobe	W33	Ю	G1V _{DD}	
D1_MDQS07	Data Strobe	V35	Ю	G1V _{DD}	
D1_MDQS07_B	Data Strobe	V36	Ю	G1V _{DD}	
D1_MDQS08	Data Strobe	F36	Ю	G1V _{DD}	
D1_MDQS08_B	Data Strobe	F35	Ю	G1V _{DD}	
D1_MDM00_B/D1_MDBI00_B/ D1_MDQS09	Data Mask/Data Bus Inversion/Data Strobe (x4)	J30	Ю	G1V _{DD}	
D1_MDQS09_B	Data Strobe (x4 support)	J31	Ю	G1V _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D1_MDM01_B/D1_MDBI01_B/ D1_MDQS10	Data Mask/Data Bus Inversion/Data Strobe (x4)	C29	Ю	G1V _{DD}	
D1_MDQS10_B	Data Strobe (x4 support)	C30	Ю	G1V _{DD}	
D1_MDM02_B/D1_MDBI02_B/ D1_MDQS11	Data Mask/Data Bus Inversion/Data Strobe (x4)	D32	Ю	G1V _{DD}	
D1_MDQS11_B	Data Strobe (x4 support)	E32	Ю	G1V _{DD}	
D1_MDM03_B/D1_MDBI03_B/ D1_MDQS12	Data Mask/Data Bus Inversion/Data Strobe (x4)	C32	Ю	G1V _{DD}	
D1_MDQS12_B	Data Strobe (x4 support)	C33	Ю	G1V _{DD}	
D1_MDM04_B/D1_MDBI04_B/ D1_MDQS13	Data Mask/Data Bus Inversion/Data Strobe (x4)	M31	Ю	G1V _{DD}	
D1_MDQS13_B	Data Strobe (x4 support)	N31	Ю	G1V _{DD}	
D1_MDM05_B/D1_MDBI05_B/ D1_MDQS14	Data Mask/Data Bus Inversion/Data Strobe (x4)	L35	Ю	G1V _{DD}	
D1_MDQS14_B	Data Strobe (x4 support)	L34	Ю	G1V _{DD}	
D1_MDM06_B/D1_MDBI06_B/ D1_MDQS15	Data Mask/Data Bus Inversion/Data Strobe (x4)	V33	Ю	G1V _{DD}	
D1_MDQS15_B	Data Strobe (x4 support)	V32	Ю	G1V _{DD}	
D1_MDM07_B/D1_MDBI07_B/ D1_MDQS16	Data Mask/Data Bus Inversion/Data Strobe (x4)	U35	Ю	G1V _{DD}	
D1_MDQS16_B	Data Strobe (x4 support)	U34	Ю	G1V _{DD}	
D1_MDM08_B/D1_MDBI08_B/ D1_MDQS17	Data Mask/Data Bus Inversion/Data Strobe (x4)	E34	Ю	G1V _{DD}	
D1_MDQS17_B	Data Strobe (x4 support)	E35	Ю	G1V _{DD}	
D1_MECC0	Error Correcting Code	D35	Ю	G1V _{DD}	
D1_MECC1	Error Correcting Code	D36	Ю	G1V _{DD}	
D1_MECC2	Error Correcting Code	H35	Ю	G1V _{DD}	
D1_MECC3	Error Correcting Code	H36	Ю	G1V _{DD}	
D1_MECC4	Error Correcting Code	E33	Ю	G1V _{DD}	
D1_MECC5	Error Correcting Code	D34	Ю	G1V _{DD}	
D1_MECC6	Error Correcting Code	G34	Ю	G1V _{DD}	
D1_MECC7	Error Correcting Code	G35	Ю	G1V _{DD}	
D1_MODT0	On Die Termination	U38	0	G1V _{DD}	2
D1_MODT1	On Die Termination / MCID[2]	W37	0	G1V _{DD}	2
D1_MODT2	On Die Termination	U39	0	G1V _{DD}	2
D1_MODT3	On Die Termination	W38	0	G1V _{DD}	2
D1_MPAR	Address Parity Out	N39	0	G1V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D1_MRAS_B	Row Address Strobe / MA[16]	R39	0	G1V _{DD}	
D1_MRESET_B	Reset to DRAM	Y38	0	G1V _{DD}	16
D1_MWE_B	Write Enable / MA[14]	R38	0	G1V _{DD}	
	DDR SDRAM Memor	yInterface 2			·
D2_MA00	Address	AG38	0	G2V _{DD}	
D2_MA01	Address	AN39	0	G2V _{DD}	
D2_MA02	Address	AM39	0	G2V _{DD}	
D2_MA03	Address	AN38	0	G2V _{DD}	
D2_MA04	Address	AN37	0	G2V _{DD}	
D2_MA05	Address	AP39	0	G2V _{DD}	
D2_MA06	Address	AP37	0	G2V _{DD}	
D2_MA07	Address	AR38	0	G2V _{DD}	
D2_MA08	Address	AR39	0	G2V _{DD}	
D2_MA09	Address	AT39	0	G2V _{DD}	
D2_MA10	Address	AF39	0	G2V _{DD}	
D2_MA11	Address	AR37	0	G2V _{DD}	
D2_MA12	Address	AT37	0	G2V _{DD}	
D2_MA13	Address	AC37	0	G2V _{DD}	
D2_MA17	Address	AA39	0	G2V _{DD}	
D2_MACT_B	Activate	AV38	0	G2V _{DD}	
D2_MALERT_B	Alert	AU39	ı	G2V _{DD}	1, 16
D2_MBA0	Bank Select	AF37	0	G2V _{DD}	
D2_MBA1	Bank Select	AG37	0	G2V _{DD}	
D2_MBG0	Bank Group	AU37	0	G2V _{DD}	
D2_MBG1	Bank Group	AU38	0	G2V _{DD}	
D2_MCAS_B	Column Address Strobe / MA[15]	AD37	0	G2V _{DD}	
D2_MCK0	Clock	AL37	0	G2V _{DD}	
D2_MCK0_B	Clock Complement	AL38	0	G2V _{DD}	
D2_MCK1	Clock	AK38	0	G2V _{DD}	
D2_MCK1_B	Clock Complement	AK39	0	G2V _{DD}	
D2_MCK2	Clock	AJ37	0	G2V _{DD}	
D2_MCK2_B	Clock Complement	AJ38	0	G2V _{DD}	
D2_MCK3	Clock	AH38	0	G2V _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D2_MCK3_B	Clock Complement	AH39	0	G2V _{DD}	
D2_MCKE0	Clock Enable	AV37	0	G2V _{DD}	2
D2_MCKE1	Clock Enable	AU36	0	G2V _{DD}	2
D2_MCKE2	Clock Enable	AW37	0	G2V _{DD}	2
D2_MCKE3	Clock Enable	AW36	0	G2V _{DD}	2
D2_MCS0_B	Chip Select	AE37	0	G2V _{DD}	
D2_MCS1_B	Chip Select	AB37	0	G2V _{DD}	
D2_MCS2_B	Chip Select / MCID[0]	AD39	0	G2V _{DD}	
D2_MCS3_B	Chip Select / MCID[1]	AB39	0	G2V _{DD}	
D2_MDIC	Driver Impedence Calibration	AM37	Ю	G2V _{DD}	3
D2_MDQ00	Data	AK29	Ю	G2V _{DD}	
D2_MDQ01	Data	AJ29	Ю	G2V _{DD}	
D2_MDQ02	Data	AH29	Ю	G2V _{DD}	
D2_MDQ03	Data	AH30	Ю	G2V _{DD}	
D2_MDQ04	Data	AL29	Ю	G2V _{DD}	
D2_MDQ05	Data	AM29	Ю	G2V _{DD}	
D2_MDQ06	Data	AJ30	Ю	G2V _{DD}	
D2_MDQ07	Data	AJ31	Ю	G2V _{DD}	
D2_MDQ08	Data	AV29	Ю	G2V _{DD}	
D2_MDQ09	Data	AW30	Ю	G2V _{DD}	
D2_MDQ10	Data	AN29	Ю	G2V _{DD}	
D2_MDQ11	Data	AN30	Ю	G2V _{DD}	
D2_MDQ12	Data	AT29	Ю	G2V _{DD}	
D2_MDQ13	Data	AW29	Ю	G2V _{DD}	
D2_MDQ14	Data	AT31	Ю	G2V _{DD}	
D2_MDQ15	Data	AP29	Ю	G2V _{DD}	
D2_MDQ16	Data	AN31	Ю	G2V _{DD}	
D2_MDQ17	Data	AM31	Ю	G2V _{DD}	
D2_MDQ18	Data	AM33	Ю	G2V _{DD}	
D2_MDQ19	Data	AL33	Ю	G2V _{DD}	
D2_MDQ20	Data	AP31	Ю	G2V _{DD}	
D2_MDQ21	Data	AR31	Ю	G2V _{DD}	
D2_MDQ22	Data	AN33	Ю	G2V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D2_MDQ23	Data	AM32	Ю	G2V _{DD}	
D2_MDQ24	Data	AU31	Ю	G2V _{DD}	
D2_MDQ25	Data	AW32	Ю	G2V _{DD}	
D2_MDQ26	Data	AU34	Ю	G2V _{DD}	
D2_MDQ27	Data	AV35	Ю	G2V _{DD}	
D2_MDQ28	Data	AW31	Ю	G2V _{DD}	
D2_MDQ29	Data	AV31	Ю	G2V _{DD}	
D2_MDQ30	Data	AW34	Ю	G2V _{DD}	
D2_MDQ31	Data	AV34	Ю	G2V _{DD}	
D2_MDQ32	Data	AH32	Ю	G2V _{DD}	
D2_MDQ33	Data	AH33	Ю	G2V _{DD}	
D2_MDQ34	Data	AE33	Ю	G2V _{DD}	
D2_MDQ35	Data	AE31	Ю	G2V _{DD}	
D2_MDQ36	Data	AK33	Ю	G2V _{DD}	
D2_MDQ37	Data	AJ33	Ю	G2V _{DD}	
D2_MDQ38	Data	AF32	Ю	G2V _{DD}	
D2_MDQ39	Data	AF31	Ю	G2V _{DD}	
D2_MDQ40	Data	AK36	Ю	G2V _{DD}	
D2_MDQ41	Data	AK35	Ю	G2V _{DD}	
D2_MDQ42	Data	AF36	Ю	G2V _{DD}	
D2_MDQ43	Data	AF35	Ю	G2V _{DD}	
D2_MDQ44	Data	AL35	Ю	G2V _{DD}	
D2_MDQ45	Data	AL34	Ю	G2V _{DD}	
D2_MDQ46	Data	AG35	Ю	G2V _{DD}	
D2_MDQ47	Data	AG34	Ю	G2V _{DD}	
D2_MDQ48	Data	AC33	Ю	G2V _{DD}	
D2_MDQ49	Data	AD31	Ю	G2V _{DD}	
D2_MDQ50	Data	Y31	Ю	G2V _{DD}	
D2_MDQ51	Data	AA31	Ю	G2V _{DD}	
D2_MDQ52	Data	AD33	Ю	G2V _{DD}	
D2_MDQ53	Data	AD32	Ю	G2V _{DD}	
D2_MDQ54	Data	AC31	Ю	G2V _{DD}	
D2_MDQ55	Data	AB31	Ю	G2V _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D2_MDQ56	Data	AD36	Ю	G2V _{DD}	
D2_MDQ57	Data	AD35	Ю	G2V _{DD}	
D2_MDQ58	Data	AA34	Ю	G2V _{DD}	
D2_MDQ59	Data	Y36	Ю	G2V _{DD}	
D2_MDQ60	Data	AE35	Ю	G2V _{DD}	
D2_MDQ61	Data	AE34	Ю	G2V _{DD}	
D2_MDQ62	Data	AA36	Ю	G2V _{DD}	
D2_MDQ63	Data	AA35	Ю	G2V _{DD}	
D2_MDQS00	Data Strobe	AK32	Ю	G2V _{DD}	
D2_MDQS00_B	Data Strobe	AK31	Ю	G2V _{DD}	
D2_MDQS01	Data Strobe	AR30	Ю	G2V _{DD}	
D2_MDQS01_B	Data Strobe	AR29	Ю	G2V _{DD}	
D2_MDQS02	Data Strobe	AP33	Ю	G2V _{DD}	
D2_MDQS02_B	Data Strobe	AP32	Ю	G2V _{DD}	
D2_MDQS03	Data Strobe	AV33	Ю	G2V _{DD}	
D2_MDQS03_B	Data Strobe	AW33	Ю	G2V _{DD}	
D2_MDQS04	Data Strobe	AF33	Ю	G2V _{DD}	
D2_MDQS04_B	Data Strobe	AG33	Ю	G2V _{DD}	
D2_MDQS05	Data Strobe	AH35	Ю	G2V _{DD}	
D2_MDQS05_B	Data Strobe	AH36	Ю	G2V _{DD}	
D2_MDQS06	Data Strobe	AA32	Ю	G2V _{DD}	
D2_MDQS06_B	Data Strobe	AA33	Ю	G2V _{DD}	
D2_MDQS07	Data Strobe	AB35	Ю	G2V _{DD}	
D2_MDQS07_B	Data Strobe	AB36	Ю	G2V _{DD}	
D2_MDQS08	Data Strobe	AP36	Ю	G2V _{DD}	
D2_MDQS08_B	Data Strobe	AP35	Ю	G2V _{DD}	
D2_MDM00_B/D2_MDBI00_B/ D2_MDQS09	Data Mask/Data Bus Inversion/Data Strobe (x4)	AL30	Ю	G2V _{DD}	
D2_MDQS09_B	Data Strobe (x4 support)	AL31	Ю	G2V _{DD}	
D2_MDM01_B/D2_MDBI01_B/ D2_MDQS10	Data Mask/Data Bus Inversion/Data Strobe (x4)	AU29	Ю	G2V _{DD}	
D2_MDQS10_B	Data Strobe (x4 support)	AU30	Ю	G2V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D2_MDM02_B/D2_MDBI02_B/ D2_MDQS11	Data Mask/Data Bus Inversion/Data Strobe (x4)	AT32	Ю	G2V _{DD}	
D2_MDQS11_B	Data Strobe (x4 support)	AR32	Ю	G2V _{DD}	
D2_MDM03_B/D2_MDBI03_B/ D2_MDQS12	Data Mask/Data Bus Inversion/Data Strobe (x4)	AU32	Ю	G2V _{DD}	
D2_MDQS12_B	Data Strobe (x4 support)	AU33	Ю	G2V _{DD}	
D2_MDM04_B/D2_MDBI04_B/ D2_MDQS13	Data Mask/Data Bus Inversion/Data Strobe (x4)	AH31	Ю	G2V _{DD}	
D2_MDQS13_B	Data Strobe (x4 support)	AG31	Ю	G2V _{DD}	
D2_MDM05_B/D2_MDBI05_B/ D2_MDQS14	Data Mask/Data Bus Inversion/Data Strobe (x4)	AJ35	Ю	G2V _{DD}	
D2_MDQS14_B	Data Strobe (x4 support)	AJ34	Ю	G2V _{DD}	
D2_MDM06_B/D2_MDBI06_B/ D2_MDQS15	Data Mask/Data Bus Inversion/Data Strobe (x4)	AB33	Ю	G2V _{DD}	
D2_MDQS15_B	Data Strobe (x4 support)	AB32	Ю	G2V _{DD}	
D2_MDM07_B/D2_MDBI07_B/ D2_MDQS16	Data Mask/Data Bus Inversion/Data Strobe (x4)	AC35	Ю	G2V _{DD}	
D2_MDQS16_B	Data Strobe (x4 support)	AC34	Ю	G2V _{DD}	
D2_MDM08_B/D2_MDBI08_B/ D2_MDQS17	Data Mask/Data Bus Inversion/Data Strobe (x4)	AR34	Ю	G2V _{DD}	
D2_MDQS17_B	Data Strobe (x4 support)	AR35	Ю	G2V _{DD}	
D2_MECC0	Error Correcting Code	AT35	Ю	G2V _{DD}	
D2_MECC1	Error Correcting Code	AT36	Ю	G2V _{DD}	
D2_MECC2	Error Correcting Code	AM35	Ю	G2V _{DD}	
D2_MECC3	Error Correcting Code	AM36	Ю	G2V _{DD}	
D2_MECC4	Error Correcting Code	AR33	Ю	G2V _{DD}	
D2_MECC5	Error Correcting Code	AT34	Ю	G2V _{DD}	
D2_MECC6	Error Correcting Code	AN34	Ю	G2V _{DD}	
D2_MECC7	Error Correcting Code	AN35	Ю	G2V _{DD}	
D2_MODT0	On Die Termination	AC38	0	G2V _{DD}	2
D2_MODT1	On Die Termination / MCID[2]	AA37	0	G2V _{DD}	2
D2_MODT2	On Die Termination	AC39	0	G2V _{DD}	2
D2_MODT3	On Die Termination	AA38	0	G2V _{DD}	2
D2_MPAR	Address Parity Out	AG39	0	G2V _{DD}	
D2_MRAS_B	Row Address Strobe / MA[16]	AE39	0	G2V _{DD}	

0	0. 15	Darder are also	l 5: .		- In .
Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
D2_MRESET_B	Reset to DRAM	Y39	0	G2V _{DD}	16
D2_MWE_B	Write Enable / MA[14]	AE38	0	G2V _{DD}	
	I2C1	•			•
IC1_SCL /GPIO1_DAT03	Serial Clock	F5	Ю	OV _{DD}	5, 6
IC1_SDA /GPIO1_DAT02	Serial Data	G5	Ю	OV _{DD}	5, 6
	I2C2	-	-		
IC2_SCL/GPIO1_DAT31/FTM1_CH0 SDHC1_CD_B	Serial Clock	E3	Ю	OV _{DD}	5, 6
IC2_SDA/GPIO1_DAT30/ TM2_CH0/SDHC1_WP	Serial Data	E4	Ю	OV _{DD}	5, 6
	I2C3	L			L
IC3_SCL/GPIO1_DAT29/ CAN1_TX EVT5_B	Serial Clock	H5	Ю	OV _{DD}	5, 6
IC3_SDA/GPIO1_DAT28/ CAN1_RX EVT6_B	Serial Data	J5	Ю	OVDD	5, 6
2C4	I	1			I.
IC4_SCL/GPIO1_DAT27/ CAN2_TX EVT7_B	Serial Clock	K5	Ю	OVDD	5, 6
IC4_SDA/GPIO1_DAT26/ CAN2_RX EVT8_B	Serial Data	L5	Ю	OV _{DD}	5, 6
	I2C5				I
IC5_SCL/SPI3_SOUT/ GPIO1_DAT25/ BDHC1_CLK_SYNC_OUT	Serial Clock	C4	Ю	OV _{DD}	5, 6
IC5_SDA/SPI3_SIN/GPIO1_DAT24/ SDHC1_CLK_SYNC_IN	Serial Data	D3	Ю	OVDD	5, 6
	I2C6				
IC6_SCL/GPIO1_DAT23/ SDHC2_CLK_SYNC_OUT	Serial Clock	D27	Ю	OV _{DD}	5, 6
IC6_SDA/GPIO1_DAT22/ SDHC2_CLK_SYNC_IN	Serial Data	C27	Ю	OV _{DD}	5, 6
	12C7				
IC7_SCL/SDHC2_DAT5/ GPIO2_DAT16/XSPI1_B_DATA5	Serial Clock	B27	Ю	OV _{DD}	5, 6
IC7_SDA/SDHC2_DAT4/ GPIO2_DAT15/XSPI1_B_DATA4	Serial Data	C26	Ю	OV _{DD}	5, 6
	I2C8				
IC8_SCL/SDHC2_DAT7/ GPIO2_DAT18/XSPI1_B_DATA7	Serial Clock	A27	Ю	OV _{DD}	5, 6
IC8_SDA/SDHC2_DAT6/ GPIO2_DAT17/XSPI1_B_DATA6	Serial Data	A26	Ю	OV _{DD}	5, 6

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes				
XSPI1									
XSPI1_A_CS0_B / GPIO2_DAT21	Chip Select	C23	0	OV _{DD}	1				
XSPI1_A_CS1_B / GPIO2_DAT20	Chip Select	D23	0	OVDD	1				
XSPI1_A_DATA0 / GPIO2_DAT24	Data	F25	Ю	OVDD					
XSPI1_A_DATA1 / GPIO2_DAT25	Data	E24	Ю	OVDD					
XSPI1_A_DATA2 / GPIO2_DAT26	Data	E26	Ю	OVDD					
XSPI1_A_DATA3 / GPIO2_DAT27	Data	E27	Ю	OV _{DD}					
XSPI1_A_DATA4 / GPIO2_DAT28	Data	F27	Ю	OVDD					
XSPI1_A_DATA5 / GPIO2_DAT29	Data	D26	Ю	OVDD					
XSPI1_A_DATA6 / GPIO2_DAT30	Data	E25	Ю	OVDD					
XSPI1_A_DATA7 / GPIO2_DAT31	Data	D24	Ю	OVDD					
XSPI1_A_DQS / GPIO2_DAT23	Data Strobe	E23	Ю	OVDD					
XSPI1_A_SCK / GPIO2_DAT22 /cfg_eng_use0	Clock	D22	0	OV _{DD}	1				
XSPI1_B_CS1_B/ SDHC2_CMD / GPIO2_DAT19/SPI2_SOUT	Chip Select	B25	0	OV _{DD}	1				
XSPI1_B_DATA0/ SDHC2_DAT0/ GPIO2_DAT11/SPI2_SIN /cfg_gpinput4	Data	A23	Ю	OV _{DD}					
XSPI1_B_DATA1/ SDHC2_DAT1/ GPIO2_DAT12/SPI2_PCS2/ cfg_gpinput5	Data	C24	Ю	OV _{DD}					
XSPI1_B_DATA2/ SDHC2_DAT2/ GPI02_DAT13/SPI2_PCS1/ cfg_gpinput6	Data	B23	Ю	OVDD					
XSPI1_B_DATA3/ SDHC2_DAT3/ GPIO2_DAT14/SPI2_PCS0/ cfg_gpinput7	Data	A24	Ю	OV _{DD}					
XSPI1_B_DATA4/ SDHC2_DAT4/ GPIO2_DAT15/IIC7_SDA	Data	C26	Ю	OV _{DD}					
XSPI1_B_DATA5/ SDHC2_DAT5/ GPIO2_DAT16/IIC7_SCL	Data	B27	Ю	OV _{DD}					
XSPI1_B_DATA6/ SDHC2_DAT6/ GPIO2_DAT17/IIC8_SDA	Data	A26	Ю	OV _{DD}					
XSPI1_B_DATA7/ SDHC2_DAT7/ GPIO2_DAT18/IIC8_SCL	Data	A27	Ю	OV _{DD}					
XSPI1_B_DQS/SDHC2_DS/ GPI02_DAT10/SPI2_PCS3	Data Strobe	C25	Ю	OV _{DD}					
XSPI1_B_SCK/SDHC2_CLK/ GPIO2_DAT09/SPI2_SCK	Clock	A25	0	OV _{DD}	1				

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes					
eSDHC 1										
SDHC1_CD_B/IIC2_SCL/ GPIO1_DAT31/FTM1_CH0	Card Detect	E3	I	OV _{DD}	1					
SDHC1_CLK/GPIO1_DAT16/ SPI1_SCK	Host to Card Clock	D1	0	EV _{DD}	1					
SDHC1_CLK_SYNC_IN/ SPI3_SIN /GPIO1_DAT24/ IIC5_SDA	Input Synchronous Clock	D3	I	OV _{DD}	1					
SDHC1_CLK_SYNC_OUT/ SPI3_SOUT/GPIO1_DAT25/ IIC5_SCL	Output Synchronuous Clock	C4	0	OVDD	1					
SDHC1_CMD / GPIO1_DAT21 /SPI1_SOUT	Command/Response	E1	Ю	EVDD	5					
SDHC1_CMD_DIR/ SPI3_PCS1 /GPIO1_DAT14/ SDHC1_DAT5	Command Direction	A4	0	OV _{DD}	1					
SDHC1_DAT0/GPIO1_DAT17 /SPI1_SIN/cfg_gpinput0	Data	F1	Ю	EVDD	5					
SDHC1_DAT0_DIR/ SPI3_PCS2 /GPIO1_DAT13/ SDHC1_DAT6	DAT0 Direction	В3	0	OV _{DD}	1					
SDHC1_DAT1/GPIO1_DAT18 /SPI1_PCS2/cfg_gpinput1	Data	E2	Ю	EVDD	5					
SDHC1_DAT123_DIR/ SPI3_PCS3 /GPIO1_DAT12/ SDHC1_DAT7	DATA[1:3] Direction	C3	0	OV _{DD}	1					
SDHC1_DAT2/ GPIO1_DAT19 /SPI1_PCS1/ cfg_gpinput2	Data	C1	Ю	EVDD	5					
SDHC1_DAT3/ GPIO1_DAT20 /SPI1_PCS0/ cfg_gpinput3	Data	C2	Ю	EVDD	5					
SDHC1_DAT4/SPI3_PCS0/ GPIO1_DAT15/SPI1_PCS3/ SDHC1_VSEL	Data	A3	Ю	OV _{DD}						
SDHC1_DAT5/SPI3_PCS1/ GPIO1_DAT14/SDHC1_CMD_DIR	Data	A4	Ю	OV _{DD}						
SDHC1_DAT6/SPI3_PCS2/ GPIO1_DAT13/SDHC1_DAT0_DIR	Data	В3	Ю	OV _{DD}						
SDHC1_DAT7/SPI3_PCS3/ GPIO1_DAT12/ SDHC1_DAT123_DIR	Data	С3	Ю	OV _{DD}						
SDHC1_DS/SPI3_SCK/ GPIO4_DAT29	Data Strobe (eMMC HS400 mode)	B2	I	OV _{DD}	1					
SDHC1_VSEL/SPI3_PCS0/ GPIO1_DAT15/SPI1_PCS3/ SDHC1_DAT4	SDHC Voltage Select	A3	0	OV _{DD}	1					
SDHC1_WP/IIC2_SDA/ GPIO1_DAT30/FTM2_CH0	Write Protect	E4	I	OV _{DD}	1					
	eSDHC 2				·					
SDHC2_CLK/GPIO2_DAT09/ SPI2_SCK/XSPI1_B_SCK	Host to Card Clock	A25	0	OV _{DD}	1					

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SDHC2_CLK_SYNC_IN/ IIC6_SDA /GPIO1_DAT22	Input Synchronous Clock	C27	I	OV _{DD}	1
SDHC2_CLK_SYNC_OUT/ IIC6_SCL /GPIO1_DAT23	Output Synchronuous Clock	D27	0	OVDD	1
SDHC2_CMD / GPIO2_DAT19 /SPI2_SOUT / XSPI1_B_CS1_B	Command/Response	B25	Ю	OV _{DD}	5
SDHC2_DAT0/GPIO2_DAT11 /SPI2_SIN/	Data	A23	Ю	OV _{DD}	5
XSPI1_B_DATA0/ cfg_gpinput4					
SDHC2_DAT1/ GPIO2_DAT12 /SPI2_PCS2 / XSPI1_B_DATA1/ cfg_gpinput5	Data	C24	Ю	OV _{DD}	5
SDHC2_DAT2 / GPIO2_DAT13 /SPI2_PCS1 / XSPI1_B_DATA2 / cfg_gpinput6	Data	B23	Ю	OV _{DD}	5
SDHC2_DAT3/GPIO2_DAT14 /SPI2_PCS0/XSPI1_B_DATA3/ cfg_gpinput7	Data	A24	Ю	OV _{DD}	5
SDHC2_DAT4/ GPIO2_DAT15 /IIC7_SDA/ XSPI1_B_DATA4	Data	C26	Ю	OVDD	5
SDHC2_DAT5/GPIO2_DAT16 /IIC7_SCL/XSPI1_B_DATA5	Data	B27	Ю	OVDD	5
SDHC2_DAT6/GPIO2_DAT17 /IIC8_SDA/XSPI1_B_DATA6	Data	A26	Ю	OVDD	5
SDHC2_DAT7/GPIO2_DAT18 /IIC8_SCL/XSPI1_B_DATA7	Data	A27	Ю	OVDD	5
SDHC2_DS/GPIO2_DAT10/ SPI2_PCS3/XSPI1_B_DQS	Data Strobe (eMMC HS400 mode)	C25	I	OVDD	1, 11
	UART	1		1	1
UART1_CTS_B / GPIO1_DAT08 /UART3_SIN	Clear To Send	A6	I	OV _{DD}	1
UART1_RTS_B / GPIO1_DAT09 / UART3_SOUT	Ready to Send	A5	0	OVDD	1
UART1_SIN/GPIO1_DAT10	Receive Data	B5	I	OV _{DD}	1
UART1_SOUT/ GPIO1_DAT11 /cfg_rcw_src1	Transmit Data	B6	0	OV _{DD}	1
UART2_CTS_B / GPIO1_DAT04 /UART4_SIN	Clear To Send	C6	I	OV _{DD}	1
UART2_RTS_B / GPIO1_DAT05 / UART4_SOUT /cfg_eng_use2	Ready to Send	C5	0	OV _{DD}	1
UART2_SIN/GPIO1_DAT06	Receive Data	D5	I	OVDD	1
UART2_SOUT/ GPIO1_DAT07 /cfg_rcw_src0	Transmit Data	D6	0	OV _{DD}	1

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
UART3_SIN/UART1_CTS_B/ GPIO1_DAT08	Serial Input	A6	I	OV _{DD}	1
UART3_SOUT/ UART1_RTS_B / GPIO1_DAT09	Serial Output	A5	0	OVDD	1
JART4_SIN/UART2_CTS_B/ GPIO1_DAT04	Serial Input	C6	1	OV _{DD}	1
JART4_SOUT/ UART2_RTS_B / GPIO1_DAT05 / cfg_eng_use2	Serial Output	C5	0	OVDD	1
	Interrupt Control	oller		1	1
RQ00/GPIO3_DAT00/FTM1_CH4	External Interrupt	H9	I	OV _{DD}	1
RQ01 /GPIO3_DAT01 / FTM2_CH4	External Interrupt	H10	I	OVDD	1
RQ02/GPIO3_DAT02/FTM1_CH5	External Interrupt	H11	I	OV _{DD}	1
RQ03/GPIO3_DAT03/FTM2_CH5	External Interrupt	J7	I	OV _{DD}	1
RQ04/GPIO3_DAT04/FTM1_CH6	External Interrupt	J11	I	OV _{DD}	1
RQ05/GPIO3_DAT05/FTM2_CH6	External Interrupt	J9	I	OV _{DD}	1
RQ06/GPIO3_DAT06/FTM1_CH7	External Interrupt	H6	I	OV _{DD}	1
RQ07/GPIO3_DAT07/FTM2_CH7	External Interrupt	K6	I	OV _{DD}	1
RQ08/GPIO3_DAT08	External Interrupt	H7	I	OV _{DD}	1
RQ09/GPIO3_DAT09	External Interrupt	K7	1	OV _{DD}	1
RQ10/GPIO3_DAT10	External Interrupt	H8	I	OV _{DD}	1
RQ11/GPIO3_DAT11	External Interrupt	K8	1	OV _{DD}	1
	Trust	ı		I.	
TA_BB_TMP_DETECT_B	Battery Backed Tamper Detect	J27	I	TA_BB_VDD	
FA_TMP_DETECT_B	Tamper Detect	N9	I	OV _{DD}	
	System Cont	rol			
HRESET_B	Hard Reset	F6	Ю	OV _{DD}	5, 6
PORESET_B	Power On Reset	E5	I	OV _{DD}	
RESET_REQ_B / GPIO2_DAT08	Reset Request (POR or Hard)	M9	0	OVDD	1, 17
	Clocking	ı		I	
DDRCLK	DDR Controller Clock	Y29	I	OVDD	
DIFF_SYSCLK_N	Differential System Clock (negative)	AT18	I	SD3_SVDD	
DIFF_SYSCLK_P	Differential System Clock (positive)	AU18	I	SD3_SVDD	
EC_GTX_CLK125 / GPIO4_DAT24	Reference Clock	P3	I	OV _{DD}	1

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
	Debug			I	
ASLEEP/GPIO2_DAT06/ EVT9_B /cfg_rcw_src2	Asleep	M7	0	OV _{DD}	1, 4
CLK_OUT/GPIO2_DAT07/ FTM1_CH1/cfg_rcw_src3	Clock Out	L6	0	OV _{DD}	2
CLK_OUT2/EC1_TXD0/ GPIO4_DAT03	Clock Output	J3	0	OV _{DD}	1
EVT0_B/GPIO3_DAT12/FTM2_CH1	Event 0	K9	Ю	OV _{DD}	7
EVT1_B/GPIO3_DAT13/FTM1_CH2	Event 1	L11	Ю	OV _{DD}	7
EVT2_B/GPIO3_DAT14/FTM2_CH2	Event 2	G6	Ю	OV _{DD}	7
EVT3_B/GPIO3_DAT15/FTM1_CH3	Event 3	L10	Ю	OV _{DD}	7
EVT4_B/GPIO3_DAT16/FTM2_CH3	Event 4	M10	Ю	OV _{DD}	7
EVT5_B/IIC3_SCL/ GPIO1_DAT29 /CAN1_TX	Event 5	H5	Ю	OV _{DD}	
EVT6_B/IIC3_SDA/GPIO1_DAT28 /CAN1_RX	Event 6	J5	Ю	OV _{DD}	
EVT7_B/IIC4_SCL/ GPIO1_DAT27 /CAN2_TX	Event 7	K5	Ю	OV _{DD}	
EVT8_B/IIC4_SDA / GPIO1_DAT26 /CAN2_RX	Event 8	L5	Ю	OV _{DD}	
EVT9_B/ASLEEP/ GPIO2_DAT06 /cfg_rcw_src2	Event 9	M7	0	OV _{DD}	1, 4
	DFT				
SCAN_MODE_B	Internal Use Only	K10	1	OV _{DD}	8
TEST_SEL_B	Internal Use Only	E6	I	OV _{DD}	5
	JTAG			<u> </u>	
TBSCAN_EN_B	Test Boundary Scan Enable	F23	ı	OVDD	5
TCK	Test Clock	G26	I	OV _{DD}	
TDI	Test Data In	H27	I	OV _{DD}	7
TDO	Test Data Out	G27	0	OV _{DD}	2
TMS	Test Mode Select	G25	ı	OV _{DD}	7
TRST_B	Test Reset	H26	1	OV _{DD}	7
	Analog Signa				1
D1_TPA	DDR Controller 1 Test Point Analog	U28	Ю	-	10
D2_TPA	DDR Controller 2 Test Point Analog	AB28	Ю	G2V _{DD}	10
FA1_CGV	Internal Use Only	AT28	Ю	-	12
FA1_CPIN	Internal Use Only	AL28	Ю	-	12

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
FA2_DGV	Internal Use Only	D28	Ю	-	12
FA2_DPIN	Internal Use Only	J28	Ю	-	12
TD1_ANODE	Thermal diode anode	K27	Ю	-	14
TD1_CATHODE	Thermal diode cathode	L27	Ю	-	14
TD2_ANODE	Thermal diode anode	J12	Ю	-	14
TD2_CATHODE	Thermal diode cathode	K12	Ю	-	14
TH_TPA	Thermal Test Point Analog	G24	-	-	10
	Serdes 1		1	<u> </u>	1
SD1_IMP_CAL_RX	SerDes Receive Impedence Calibration	AJ20	I	SD_SVDD	9
SD1_IMP_CAL_TX	SerDes Transmit Impedance Calibration	AJ13	1	SD_OV _{DD}	13
SD1_PLLF_REF_CLK_N	SerDes PLL Fast Reference Clock Complement	AV13	I	SD_SVDD	
SD1_PLLF_REF_CLK_P	SerDes PLL Fast Reference Clock	AW13	I	SD_SVDD	
SD1_PLLF_TPA	SerDes PLL Fast Analog Test Point	AJ18	0	AVDD_SD1_PLLF	10
SD1_PLLF_TPD	SerDes PLL Fast Digital Test Point	AJ17	0	SD_SVDD	10
SD1_PLLS_REF_CLK_N	SerDes PLL Slow Reference Clock Complement	AP13	I	SD_SVDD	
SD1_PLLS_REF_CLK_P	SerDes PLL Slow Reference Clock	AR13	I	SD_SVDD	
SD1_PLLS_TPA	SerDes PLL Slow Analog Test Point	AJ15	0	AVDD_SD1_PLLS	10
SD1_PLLS_TPD	SerDes PLL Slow Digital Test Point	AJ14	0	SD_SVDD	10
SD1_RX0_N	SerDes Receive Data (negative)	AV9	I	SD_SV _{DD}	
SD1_RX0_P	SerDes Receive Data (positive)	AW9	I	SD_SVDD	
SD1_RX1_N	SerDes Receive Data (negative)	AT10	I	SD_SVDD	
SD1_RX1_P	SerDes Receive Data (positive)	AU10	I	SD_SV _{DD}	
SD1_RX2_N	SerDes Receive Data (negative)	AV11	I	SD_SV _{DD}	
SD1_RX2_P	SerDes Receive Data (positive)	AW11	I	SD_SV _{DD}	
SD1_RX3_N	SerDes Receive Data (negative)	AT12	I	SD_SV _{DD}	
SD1_RX3_P	SerDes Receive Data (positive)	AU12	I	SD_SVDD	
SD1_RX4_N	SerDes Receive Data (negative)	AT14	1	SD_SVDD	
SD1_RX4_P	SerDes Receive Data (positive)	AU14	I	SD_SVDD	
SD1_RX5_N	SerDes Receive Data (negative)	AV15	I	SD_SVDD	
SD1_RX5_P	SerDes Receive Data (positive)	AW15	I	SD_SV _{DD}	
SD1_RX6_N	SerDes Receive Data (negative)	AT16	I	SD_SVDD	
SD1_RX6_P	SerDes Receive Data (positive)	AU16	I	SD_SVDD	
SD1_RX7_N	SerDes Receive Data (negative)	AV17	I	SD_SV _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD1_RX7_P	SerDes Receive Data (positive)	AW17	ı	SD_SV _{DD}	
SD1_TX0_N	SerDes Transmit Data (negative)	AN9	0	SD_OVDD	
SD1_TX0_P	SerDes Transmit Data (positive)	AP9	0	SD_OVDD	
SD1_TX1_N	SerDes Transmit Data (negative)	AL10	0	SD_OV _{DD}	
SD1_TX1_P	SerDes Transmit Data (positive)	AM10	0	SD_OVDD	
SD1_TX2_N	SerDes Transmit Data (negative)	AN11	0	SD_OVDD	
SD1_TX2_P	SerDes Transmit Data (positive)	AP11	0	SD_OV _{DD}	
SD1_TX3_N	SerDes Transmit Data (negative)	AL12	0	SD_OVDD	
SD1_TX3_P	SerDes Transmit Data (positive)	AM12	0	SD_OVDD	
SD1_TX4_N	SerDes Transmit Data (negative)	AL14	0	SD_OVDD	
SD1_TX4_P	SerDes Transmit Data (positive)	AM14	0	SD_OVDD	
SD1_TX5_N	SerDes Transmit Data (negative)	AN15	0	SD_OVDD	
SD1_TX5_P	SerDes Transmit Data (positive)	AP15	0	SD_OVDD	
SD1_TX6_N	SerDes Transmit Data (negative)	AL16	0	SD_OV _{DD}	
SD1_TX6_P	SerDes Transmit Data (positive)	AM16	0	SD_OV _{DD}	
SD1_TX7_N	SerDes Transmit Data (negative)	AN17	0	SD_OVDD	
SD1_TX7_P	SerDes Transmit Data (positive)	AP17	0	SD_OVDD	
	Serdes 2	I			
SD2_IMP_CAL_RX	SerDes Receive Impedence Calibration	AJ21	I	SD_SVDD	9
SD2_IMP_CAL_TX	SerDes Transmit Impedance Calibration	AJ27	I	SD_OVDD	13
SD2_PLLF_REF_CLK_N	SerDes PLL Fast Reference Clock Complement	AR23	I	SD_SV _{DD}	
SD2_PLLF_REF_CLK_P	SerDes PLL Fast Reference Clock	AP23	I	SD_SVDD	
SD2_PLLF_TPA	SerDes PLL Fast Analog Test Point	AJ23	0	AVDD_SD2_PLLF	10
SD2_PLLF_TPD	SerDes PLL Fast Digital Test Point	AJ24	0	SD_SVDD	10
SD2_PLLS_REF_CLK_N	SerDes PLL Slow Reference Clock Complement	AW23	I	SD_SVDD	
SD2_PLLS_REF_CLK_P	SerDes PLL Slow Reference Clock	AV23	ı	SD_SV _{DD}	
SD2_PLLS_TPA	SerDes PLL Slow Analog Test Point	AJ26	0	AVDD_SD2_PLLS	10
SD2_PLLS_TPD	SerDes PLL Slow Digital Test Point	AH26	0	SD_SV _{DD}	10
SD2_RX0_N	SerDes Receive Data (negative)	AV19	I	SD_SV _{DD}	
SD2_RX0_P	SerDes Receive Data (positive)	AW19	I	SD_SV _{DD}	
SD2_RX1_N	SerDes Receive Data (negative)	AT20	I	SD_SVDD	
SD2_RX1_P	SerDes Receive Data (positive)	AU20	I	SD_SVDD	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD2_RX2_N	SerDes Receive Data (negative)	AV21	I	SD_SVDD	
SD2_RX2_P	SerDes Receive Data (positive)	AW21	1	SD_SV _{DD}	
SD2_RX3_N	SerDes Receive Data (negative)	AT22	I	SD_SV _{DD}	
SD2_RX3_P	SerDes Receive Data (positive)	AU22	I	SD_SV _{DD}	
SD2_RX4_N	SerDes Receive Data (negative)	AT24	I	SD_SVDD	
SD2_RX4_P	SerDes Receive Data (positive)	AU24	I	SD_SVDD	
SD2_RX5_N	SerDes Receive Data (negative)	AV25	I	SD_SVDD	
SD2_RX5_P	SerDes Receive Data (positive)	AW25	I	SD_SVDD	
SD2_RX6_N	SerDes Receive Data (negative)	AT26	ı	SD_SV _{DD}	
SD2_RX6_P	SerDes Receive Data (positive)	AU26	I	SD_SV _{DD}	
SD2_RX7_N	SerDes Receive Data (negative)	AV27	I	SD_SVDD	
SD2_RX7_P	SerDes Receive Data (positive)	AW27	I	SD_SVDD	
SD2_TX0_N	SerDes Transmit Data (negative)	AN19	0	SD_OVDD	
SD2_TX0_P	SerDes Transmit Data (positive)	AP19	0	SD_OVDD	
SD2_TX1_N	SerDes Transmit Data (negative)	AL20	0	SD_OVDD	
SD2_TX1_P	SerDes Transmit Data (positive)	AM20	0	SD_OVDD	
SD2_TX2_N	SerDes Transmit Data (negative)	AN21	0	SD_OVDD	
SD2_TX2_P	SerDes Transmit Data (positive)	AP21	0	SD_OVDD	
SD2_TX3_N	SerDes Transmit Data (negative)	AL22	0	SD_OVDD	
SD2_TX3_P	SerDes Transmit Data (positive)	AM22	0	SD_OVDD	
SD2_TX4_N	SerDes Transmit Data (negative)	AL24	0	SD_OVDD	
SD2_TX4_P	SerDes Transmit Data (positive)	AM24	0	SD_OVDD	
SD2_TX5_N	SerDes Transmit Data (negative)	AN25	0	SD_OVDD	
SD2_TX5_P	SerDes Transmit Data (positive)	AP25	0	SD_OVDD	
SD2_TX6_N	SerDes Transmit Data (negative)	AL26	0	SD_OVDD	
SD2_TX6_P	SerDes Transmit Data (positive)	AM26	0	SD_OVDD	
SD2_TX7_N	SerDes Transmit Data (negative)	AN27	0	SD_OVDD	
SD2_TX7_P	SerDes Transmit Data (positive)	AP27	0	SD_OVDD	
	Serdes 3		1		
SD3_IMP_CAL_RX	SerDes Receive Impedence Calibration	L15	I	SD3_SV _{DD}	9
SD3_IMP_CAL_TX	SerDes Transmit Impedance Calibration	L20	I	SD3_OV _{DD}	13

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD3_PLLF_REF_CLK_N	SerDes PLL Fast Reference Clock Complement	E17	I	SD3_SV _{DD}	
SD3_PLLF_REF_CLK_P	SerDes PLL Fast Reference Clock	F17	ı	SD3_SVDD	
SD3_PLLF_TPA	SerDes PLL Fast Analog Test Point	L17	0	AVDD_SD3_PLLF	10
SD3_PLLF_TPD	SerDes PLL Fast Digital Test Point	L18	0	SD3_SV _{DD}	10
SD3_PLLS_REF_CLK_N	SerDes PLL Slow Reference Clock Complement	A17	I	SD3_SV _{DD}	
SD3_PLLS_REF_CLK_P	SerDes PLL Slow Reference Clock	B17	ı	SD3_SV _{DD}	
SD3_PLLS_TPA	SerDes PLL Slow Analog Test Point	J22	0	AVDD_SD3_PLLS	10
SD3_PLLS_TPD	SerDes PLL Slow Digital Test Point	L22	0	SD3_SV _{DD}	10
SD3_RX0_N	SerDes Receive Data (negative)	B13	ı	SD3_SVDD	
SD3_RX0_P	SerDes Receive Data (positive)	A13	I	SD3_SVDD	
SD3_RX1_N	SerDes Receive Data (negative)	D14	I	SD3_SV _{DD}	
SD3_RX1_P	SerDes Receive Data (positive)	C14	I	SD3_SVDD	
SD3_RX2_N	SerDes Receive Data (negative)	B15	I	SD3_SVDD	
SD3_RX2_P	SerDes Receive Data (positive)	A15	I	SD3_SV _{DD}	
SD3_RX3_N	SerDes Receive Data (negative)	D16	I	SD3_SVDD	
SD3_RX3_P	SerDes Receive Data (positive)	C16	I	SD3_SVDD	
SD3_RX4_N	SerDes Receive Data (negative)	D18	I	SD3_SVDD	
SD3_RX4_P	SerDes Receive Data (positive)	C18	I	SD3_SV _{DD}	
SD3_RX5_N	SerDes Receive Data (negative)	B19	I	SD3_SV _{DD}	
SD3_RX5_P	SerDes Receive Data (positive)	A19	I	SD3_SV _{DD}	
SD3_RX6_N	SerDes Receive Data (negative)	D20	I	SD3_SV _{DD}	
SD3_RX6_P	SerDes Receive Data (positive)	C20	I	SD3_SV _{DD}	
SD3_RX7_N	SerDes Receive Data (negative)	B21	I	SD3_SVDD	
SD3_RX7_P	SerDes Receive Data (positive)	A21	ı	SD3_SV _{DD}	
SD3_TX0_N	SerDes Transmit Data (negative)	G13	0	SD3_OV _{DD}	
SD3_TX0_P	SerDes Transmit Data (positive)	F13	0	SD3_OV _{DD}	
SD3_TX1_N	SerDes Transmit Data (negative)	J14	0	SD3_OV _{DD}	
SD3_TX1_P	SerDes Transmit Data (positive)	H14	0	SD3_OV _{DD}	
SD3_TX2_N	SerDes Transmit Data (negative)	G15	0	SD3_OV _{DD}	
SD3_TX2_P	SerDes Transmit Data (positive)	F15	0	SD3_OV _{DD}	
SD3_TX3_N	SerDes Transmit Data (negative)	J16	0	SD3_OV _{DD}	
SD3_TX3_P	SerDes Transmit Data (positive)	H16	0	SD3_OVDD	
SD3_TX4_N	SerDes Transmit Data (negative)	J18	0	SD3_OVDD	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD3_TX4_P	SerDes Transmit Data (positive)	H18	0	SD3_OVDD	
SD3_TX5_N	SerDes Transmit Data (negative)	G19	0	SD3_OV _{DD}	
SD3_TX5_P	SerDes Transmit Data (positive)	F19	0	SD3_OV _{DD}	
SD3_TX6_N	SerDes Transmit Data (negative)	J20	0	SD3_OV _{DD}	
SD3_TX6_P	SerDes Transmit Data (positive)	H20	0	SD3_OV _{DD}	
SD3_TX7_N	SerDes Transmit Data (negative)	G21	0	SD3_OVDD	
SD3_TX7_P	SerDes Transmit Data (positive)	F21	0	SD3_OVDD	
	USB PHY 1 a	nd 2	1		
USB1_DRVVBUS / GPIO4_DAT25/cfg_soc_use	USB PHY Digital signal - Drive VBUS	A7	0	OV _{DD}	1
USB1_D_M	USB PHY Data Minus	F9	Ю	USB_HV _{DD}	
USB1_D_P	USB PHY Data Plus	F8	Ю	USB_HV _{DD}	
USB1_ID	USB PHY ID Detect	E9	I	-	
USB1_PWRFAULT / GPIO4_DAT26	USB PHY Digital signal - Power Fault	B7	I	OVDD	1
USB1_RESREF	USB PHY Impedance Calibration	C12	Ю	-	15
USB1_RX_M	USB PHY 3.0 Receive Data (negative)	D8	I	USB_SVDD	
USB1_RX_P	USB PHY 3.0 Receive Data (positive)	C8	I	USB_SV _{DD}	
USB1_TX_M	USB PHY 3.0 Transmit Data (negative)	В9	0	USB_SVDD	
USB1_TX_P	USB PHY 3.0 Transmit Data (positive)	A9	0	USB_SVDD	
USB1_VBUS	USB PHY VBUS	G8	1	-	18
USB2_DRVVBUS / GPIO4_DAT27	USB PHY Digital signal - Drive VBUS	E7	0	OVDD	1
USB2_D_M	USB PHY Data Minus	F11	Ю	USB_HVDD	
USB2_D_P	USB PHY Data Plus	F10	Ю	USB_HV _{DD}	
USB2_ID	USB PHY ID Detect	E11	I	-	
USB2_PWRFAULT / GPIO4_DAT28	USB PHY Digital signal - Power Fault	G7	I	OV _{DD}	1
USB2_RESREF	USB PHY Impedance Calibration	D12	Ю	-	15
USB2_RX_M	USB PHY 3.0 Receive Data (negative)	D10	1	USB_SV _{DD}	
USB2_RX_P	USB PHY 3.0 Receive Data (positive)	C10	I	USB_SV _{DD}	
USB2_TX_M	USB PHY 3.0 Transmit Data (negative)	B11	0	USB_SV _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
USB2_TX_P	USB PHY 3.0 Transmit Data (positive)	A11	0	USB_SV _{DD}	
USB2_VBUS	USB PHY VBUS	G10	1	-	18
	Ethernet Cont	roller 1		1	
EC1_GTX_CLK / GPIO4_DAT05	Transmit Clock Out	F3	0	OV _{DD}	1
EC1_RXD0/GPIO4_DAT09	Receive Data	J2	1	OV _{DD}	1
EC1_RXD1/GPIO4_DAT08	Receive Data	J1	I.	OV _{DD}	1
EC1_RXD2/GPIO4_DAT07	Receive Data	H1	I	OV _{DD}	1
EC1_RXD3/GPIO4_DAT06	Receive Data	G2	ı	OV _{DD}	1
EC1_RX_CLK /GPIO4_DAT10	Receive Clock	G1	ı	OV _{DD}	1
EC1_RX_DV /GPIO4_DAT11	Receive Data Valid	K1	I	OV _{DD}	1
EC1_TXD0/GPIO4_DAT03/ CLK_OUT2	Transmit Data	J3	0	OV _{DD}	1
EC1_TXD1/GPIO4_DAT02	Transmit Data	H3	0	OV _{DD}	1
EC1_TXD2/GPIO4_DAT01	Transmit Data	G4	0	OV _{DD}	1
EC1_TXD3/GPIO4_DAT00	Transmit Data	G3	0	OV _{DD}	1
EC1_TX_EN/GPIO4_DAT04	Transmit Enable	J4	0	OV _{DD}	1, 11
	Ethernet Cont	roller 2		I	
EC2_GTX_CLK / GPIO4_DAT17	Transmit Clock Out	K3	0	OVDD	1
EC2_RXD0/GPIO4_DAT21/ TSEC_1588_TRIG_IN2	Receive Data	N2	I	OV _{DD}	1
EC2_RXD1/GPIO4_DAT20/ TSEC_1588_PULSE_OUT1	Receive Data	N1	I	OV _{DD}	1
EC2_RXD2/GPIO4_DAT19	Receive Data	M1	I	OV _{DD}	1
EC2_RXD3/GPIO4_DAT18	Receive Data	L2	I	OV _{DD}	1
EC2_RX_CLK / GPIO4_DAT22 / TSEC_1588_CLK_IN	Receive Clock	L1	I	OVDD	1
EC2_RX_DV/GPIO4_DAT23/ TSEC_1588_TRIG_IN1	Receive Data Valid	P1	I	OVDD	1
EC2_TXD0/GPIO4_DAT15/ TSEC_1588_PULSE_OUT2	Transmit Data	N3	0	OVDD	1
EC2_TXD1/GPIO4_DAT14/ TSEC_1588_CLK_OUT	Transmit Data	M3	0	OVDD	1
EC2_TXD2/GPIO4_DAT13/ TSEC_1588_ALARM_OUT1	Transmit Data	L4	0	OVDD	1
EC2_TXD3/GPIO4_DAT12/ TSEC_1588_ALARM_OUT2	Transmit Data	L3	0	OVDD	1
EC2_TX_EN/GPIO4_DAT16	Transmit Enable	N4	0	OVDD	1, 11
	•	· · · · · · · · · · · · · · · · · · ·			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes					
Sync Ethernet ClockOut										
RCLK0	Reconstructed Clock	N6	0	OVDD						
RCLK1	Reconstructed Clock	N8	0	OVDD						
	Ethernet Management Interface 1									
EMI1_MDC	Management Data Clock	R2	0	OVDD						
EMI1_MDIO	Management Data In/Out	R1	Ю	OVDD						
	Ethernet Management	Interface 2								
EMI2_MDC	Management Data Clock	P4	0	OV _{DD}						
EMI2_MDIO	Management Data In/Out	R3	Ю	OV _{DD}	5, 6					
	General Purpose Inp	ut/Output	I	1	1					
GPIO1_DAT02/ IIC1_SDA	General Purpose Input/Output	G5	Ю	OV _{DD}						
GPIO1_DAT03/ IIC1_SCL	General Purpose Input/Output	F5	Ю	OV _{DD}						
GPIO1_DAT04/ UART2_CTS_B /UART4_SIN	General Purpose Input/Output	C6	Ю	OVDD						
GPIO1_DAT05/ UART2_RTS_B / UART4_SOUT /cfg_eng_use2	General Purpose Input/Output	C5	0	OV _{DD}	1					
GPIO1_DAT06/UART2_SIN	General Purpose Input/Output	D5	Ю	OV _{DD}						
GPIO1_DAT07/ UART2_SOUT /cfg_rcw_src0	General Purpose Input/Output	D6	0	OV _{DD}	1					
GPIO1_DAT08/ UART1_CTS_B /UART3_SIN	General Purpose Input/Output	A6	Ю	OVDD						
GPIO1_DAT09/ UART1_RTS_B / UART3_SOUT	General Purpose Input/Output	A5	0	OV _{DD}	1					
GPIO1_DAT10/UART1_SIN	General Purpose Input/Output	B5	Ю	OV _{DD}						
GPIO1_DAT11/ UART1_SOUT /cfg_rcw_src1	General Purpose Input/Output	B6	0	OV _{DD}	1					
GPIO1_DAT12/SPI3_PCS3/ SDHC1_DAT123_DIR / SDHC1_DAT7	General Purpose Input/Output	C3	Ю	OV _{DD}						
GPIO1_DAT13/SPI3_PCS2/ SDHC1_DAT0_DIR/SDHC1_DAT6	General Purpose Input/Output	B3	Ю	OV _{DD}						
GPIO1_DAT14/SPI3_PCS1/ SDHC1_CMD_DIR/SDHC1_DAT5	General Purpose Input/Output	A4	Ю	OV _{DD}						
GPIO1_DAT15/SPI3_PCS0/ SPI1_PCS3/SDHC1_VSEL/ SDHC1_DAT4	General Purpose Input/Output	A3	Ю	OV _{DD}						
GPIO1_DAT16/SDHC1_CLK/ SPI1_SCK	General Purpose Input/Output	D1	Ю	EV _{DD}						

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GPIO1_DAT17/ SDHC1_DAT0 /SPI1_SIN/ cfg_gpinput0	General Purpose Input/Output	F1	Ю	EV _{DD}	
GPIO1_DAT18/ SDHC1_DAT1 /SPI1_PCS2/ cfg_gpinput1	General Purpose Input/Output	E2	Ю	EV _{DD}	
GPIO1_DAT19/ SDHC1_DAT2 /SPI1_PCS1 / cfg_gpinput2	General Purpose Input/Output	C1	Ю	EV _{DD}	
GPIO1_DAT20/ SDHC1_DAT3 /SPI1_PCS0/ cfg_gpinput3	General Purpose Input/Output	C2	Ю	EV _{DD}	
GPIO1_DAT21/ SDHC1_CMD /SPI1_SOUT	General Purpose Input/Output	E1	Ю	EV _{DD}	
GPIO1_DAT22/IIC6_SDA/ SDHC2_CLK_SYNC_IN	General Purpose Input/Output	C27	Ю	OV _{DD}	
GPIO1_DAT23/IIC6_SCL/ SDHC2_CLK_SYNC_OUT	General Purpose Input/Output	D27	Ю	OVDD	
GPIO1_DAT24/SPI3_SIN/ SDHC1_CLK_SYNC_IN/IIC5_SDA	General Purpose Input/Output	D3	Ю	OV _{DD}	
GPIO1_DAT25/SPI3_SOUT/ SDHC1_CLK_SYNC_OUT/IIC5_SCL	General Purpose Input/Output	C4	Ю	OV _{DD}	
GPIO1_DAT26/IIC4_SDA/CAN2_RX /EVT8_B	General Purpose Input/Output	L5	Ю	OV _{DD}	
GPIO1_DAT27/IIC4_SCL/ CAN2_TX /EVT7_B	General Purpose Input/Output	K5	Ю	OVDD	
GPIO1_DAT28/IIC3_SDA/CAN1_RX /EVT6_B	General Purpose Input/Output	J5	Ю	OVDD	
GPIO1_DAT29/IIC3_SCL/ CAN1_TX /EVT5_B	General Purpose Input/Output	H5	Ю	OVDD	
GPIO1_DAT30/IIC2_SDA/ FTM2_CH0/SDHC1_WP	General Purpose Input/Output	E4	Ю	OV _{DD}	
GPIO1_DAT31/IIC2_SCL/FTM1_CH0 /SDHC1_CD_B	General Purpose Input/Output	E3	Ю	OV _{DD}	
GPIO2_DAT06/ASLEEP/ EVT9_B /cfg_rcw_src2	General Purpose Input/Output	M7	0	OVDD	1
GPIO2_DAT07/CLK_OUT/ FTM1_CH1 /cfg_rcw_src3	General Purpose Input/Output	L6	0	OV _{DD}	1
GPIO2_DAT08/ RESET_REQ_B	General Purpose Input/Output	M9	0	OV _{DD}	1
GPIO2_DAT09/SDHC2_CLK/ SPI2_SCK /XSPI1_B_SCK	General Purpose Input/Output	A25	Ю	OVDD	
GPIO2_DAT10/SDHC2_DS/ SPI2_PCS3/XSPI1_B_DQS	General Purpose Input/Output	C25	Ю	OVDD	
GPIO2_DAT11/ SDHC2_DAT0 /SPI2_SIN/ XSPI1_B_DATA0/ cfg_gpinput4	General Purpose Input/Output	A23	Ю	OV _{DD}	
GPIO2_DAT12/ SDHC2_DAT1 /SPI2_PCS2/ XSPI1_B_DATA1/ cfg_gpinput5	General Purpose Input/Output	C24	Ю	OV _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GPIO2_DAT13/ SDHC2_DAT2 /SPI2_PCS1 / XSPI1_B_DATA2/ cfg_gpinput6	General Purpose Input/Output	B23	Ю	OVDD	
GPIO2_DAT14/ SDHC2_DAT3 /SPI2_PCS0 / XSPI1_B_DATA3/ cfg_gpinput7	General Purpose Input/Output	A24	Ю	OVDD	
GPIO2_DAT15/ SDHC2_DAT4 /IIC7_SDA / XSPI1_B_DATA4	General Purpose Input/Output	C26	Ю	OV _{DD}	
GPIO2_DAT16/ SDHC2_DAT5 /IIC7_SCL/ XSPI1_B_DATA5	General Purpose Input/Output	B27	Ю	OV _{DD}	
GPIO2_DAT17/ SDHC2_DAT6 /IIC8_SDA/ XSPI1_B_DATA6	General Purpose Input/Output	A26	Ю	OV _{DD}	
GPIO2_DAT18/ SDHC2_DAT7 /IIC8_SCL / XSPI1_B_DATA7	General Purpose Input/Output	A27	Ю	OV _{DD}	
GPIO2_DAT19/ SDHC2_CMD /SPI2_SOUT / XSPI1_B_CS1_B	General Purpose Input/Output	B25	Ю	OVDD	
GPIO2_DAT20/ XSPI1_A_CS1_B	General Purpose Input/Output	D23	0	OV _{DD}	1
GPIO2_DAT21/ XSPI1_A_CS0_B	General Purpose Input/Output	C23	0	OV _{DD}	1
GPIO2_DAT22/ XSPI1_A_SCK /cfg_eng_use0	General Purpose Input/Output	D22	0	OV _{DD}	1
GPIO2_DAT23/ XSPI1_A_DQS	General Purpose Input/Output	E23	Ю	OV _{DD}	
GPIO2_DAT24/ XSPI1_A_DATA0	General Purpose Input/Output	F25	Ю	OV _{DD}	
GPIO2_DAT25/ XSPI1_A_DATA1	General Purpose Input/Output	E24	Ю	OV _{DD}	
GPIO2_DAT26/ XSPI1_A_DATA2	General Purpose Input/Output	E26	Ю	OV _{DD}	
GPIO2_DAT27/ XSPI1_A_DATA3	General Purpose Input/Output	E27	Ю	OV _{DD}	
GPIO2_DAT28/ XSPI1_A_DATA4	General Purpose Input/Output	F27	Ю	OV _{DD}	
GPIO2_DAT29/ XSPI1_A_DATA5	General Purpose Input/Output	D26	Ю	OV _{DD}	
GPIO2_DAT30/ XSPI1_A_DATA6	General Purpose Input/Output	E25	Ю	OV _{DD}	
GPIO2_DAT31/ XSPI1_A_DATA7	General Purpose Input/Output	D24	Ю	OV _{DD}	
GPIO3_DAT00/ IRQ00 / FTM1_CH4	General Purpose Input/Output	H9	Ю	OV _{DD}	
GPIO3_DAT01/ IRQ01 / FTM2_CH4	General Purpose Input/Output	H10	Ю	OV _{DD}	
GPIO3_DAT02/ IRQ02 / FTM1_CH5	General Purpose Input/Output	H11	Ю	OV _{DD}	
GPIO3_DAT03/ IRQ03 / FTM2_CH5	General Purpose Input/Output	J7	Ю	OV _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GPIO3_DAT04/ IRQ04 / FTM1_CH6	General Purpose Input/Output	J11	Ю	OV _{DD}	
GPIO3_DAT05/ IRQ05 / FTM2_CH6	General Purpose Input/Output	J9	Ю	OV _{DD}	
GPIO3_DAT06/ IRQ06 / FTM1_CH7	General Purpose Input/Output	H6	Ю	OV _{DD}	
GPIO3_DAT07/ IRQ07 / FTM2_CH7	General Purpose Input/Output	K6	Ю	OV _{DD}	
GPIO3_DAT08/ IRQ08	General Purpose Input/Output	H7	Ю	OV _{DD}	
GPIO3_DAT09/ IRQ09	General Purpose Input/Output	K7	Ю	OVDD	
GPIO3_DAT10/ IRQ10	General Purpose Input/Output	H8	Ю	OV _{DD}	
GPIO3_DAT11/IRQ11	General Purpose Input/Output	K8	Ю	OV _{DD}	
GPIO3_DAT12/EVT0_B/FTM2_CH1	General Purpose Input/Output	K9	Ю	OV _{DD}	
GPIO3_DAT13/EVT1_B/FTM1_CH2	General Purpose Input/Output	L11	Ю	OV _{DD}	
GPIO3_DAT14/EVT2_B/FTM2_CH2	General Purpose Input/Output	G6	Ю	OVDD	
GPIO3_DAT15/EVT3_B/FTM1_CH3	General Purpose Input/Output	L10	Ю	OVDD	
GPIO3_DAT16/EVT4_B/FTM2_CH3	General Purpose Input/Output	M10	Ю	OVDD	
GPIO4_DAT00/EC1_TXD3	General Purpose Input/Output	G3	Ю	OV _{DD}	
GPIO4_DAT01/EC1_TXD2	General Purpose Input/Output	G4	Ю	OV _{DD}	
GPIO4_DAT02/EC1_TXD1	General Purpose Input/Output	H3	Ю	OV _{DD}	
GPIO4_DAT03/EC1_TXD0 / CLK_OUT2	General Purpose Input/Output	J3	Ю	OV _{DD}	
GPIO4_DAT04/EC1_TX_EN	General Purpose Input/Output	J4	Ю	OV _{DD}	
GPIO4_DAT05/ EC1_GTX_CLK	General Purpose Input/Output	F3	Ю	OV _{DD}	
GPIO4_DAT06/EC1_RXD3	General Purpose Input/Output	G2	Ю	OV _{DD}	
GPIO4_DAT07/EC1_RXD2	General Purpose Input/Output	H1	Ю	OV _{DD}	
GPIO4_DAT08/EC1_RXD1	General Purpose Input/Output	J1	Ю	OV _{DD}	
GPIO4_DAT09/EC1_RXD0	General Purpose Input/Output	J2	Ю	OV _{DD}	
GPIO4_DAT10/ EC1_RX_CLK	General Purpose Input/Output	G1	Ю	OV _{DD}	
GPIO4_DAT11/ EC1_RX_DV	General Purpose Input/Output	K1	Ю	OVDD	
GPIO4_DAT12/EC2_TXD3/ TSEC_1588_ALARM_OUT2	General Purpose Input/Output	L3	Ю	OV _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GPIO4_DAT13/EC2_TXD2/ TSEC_1588_ALARM_OUT1	General Purpose Input/Output	L4	Ю	OVDD	
GPIO4_DAT14/EC2_TXD1/ TSEC_1588_CLK_OUT	General Purpose Input/Output	M3	Ю	OVDD	
GPIO4_DAT15/EC2_TXD0/ TSEC_1588_PULSE_OUT2	General Purpose Input/Output	N3	Ю	OVDD	
GPIO4_DAT16/EC2_TX_EN	General Purpose Input/Output	N4	Ю	OV _{DD}	
GPIO4_DAT17/ EC2_GTX_CLK	General Purpose Input/Output	K3	Ю	OV _{DD}	
GPIO4_DAT18/EC2_RXD3	General Purpose Input/Output	L2	Ю	OV _{DD}	
GPIO4_DAT19/EC2_RXD2	General Purpose Input/Output	M1	Ю	OV _{DD}	
GPIO4_DAT20/EC2_RXD1/ TSEC_1588_PULSE_OUT1	General Purpose Input/Output	N1	Ю	OVDD	
GPIO4_DAT21/EC2_RXD0/ TSEC_1588_TRIG_IN2	General Purpose Input/Output	N2	Ю	OVDD	
GPIO4_DAT22/ EC2_RX_CLK / TSEC_1588_CLK_IN	General Purpose Input/Output	L1	Ю	OV _{DD}	
GPIO4_DAT23/EC2_RX_DV/ TSEC_1588_TRIG_IN1	General Purpose Input/Output	P1	Ю	OVDD	
GPIO4_DAT24/ EC_GTX_CLK125	General Purpose Input/Output	P3	Ю	OVDD	
GPIO4_DAT25/ USB1_DRVVBUS / cfg_soc_use	General Purpose Input/Output	A7	Ю	OVDD	1
GPIO4_DAT26/ USB1_PWRFAULT	General Purpose Input/Output	B7	Ю	OVDD	
GPIO4_DAT27/ USB2_DRVVBUS	General Purpose Input/Output	E7	Ю	OV _{DD}	
GPIO4_DAT28/ USB2_PWRFAULT	General Purpose Input/Output	G7	Ю	OV _{DD}	
GPIO4_DAT29/SPI3_SCK/ SDHC1_DS	General Purpose Input/Output	B2	Ю	OVDD	
	FlexTimer Mo	odule	•		
FTM1_CH0/IIC2_SCL/ GPIO1_DAT31/SDHC1_CD_B	Channel 0	E3	Ю	OVDD	
FTM1_CH1/CLK_OUT/ GPIO2_DAT07 /cfg_rcw_src3	Channel 1	L6	0	OVDD	1
FTM1_CH2/EVT1_B/ GPIO3_DAT13	Channel 2	L11	Ю	OV _{DD}	
FTM1_CH3/EVT3_B/ GPIO3_DAT15	Channel 3	L10	Ю	OV _{DD}	
FTM1_CH4/ IRQ00 / GPIO3_DAT00	Channel 4	H9	Ю	OV _{DD}	
FTM1_CH5/ IRQ02 / GPIO3_DAT02	Channel 5	H11	Ю	OV _{DD}	
FTM1_CH6/ IRQ04 / GPIO3_DAT04	Channel 6	J11	Ю	OV _{DD}	
FTM1_CH7/ IRQ06 / GPIO3_DAT06	Channel 7	H6	Ю	OV _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
FTM2_CH0/IIC2_SDA/ GPIO1_DAT30/SDHC1_WP	Channel 0	E4	Ю	OV _{DD}	
FTM2_CH1/EVT0_B/GPIO3_DAT12	Channel 1	K9	Ю	OVDD	
FTM2_CH2/EVT2_B/GPIO3_DAT14	Channel 2	G6	Ю	OV _{DD}	
FTM2_CH3/EVT4_B/GPIO3_DAT16	Channel 3	M10	Ю	OV _{DD}	
FTM2_CH4/ IRQ01 / GPIO3_DAT01	Channel 4	H10	Ю	OVDD	
FTM2_CH5/ IRQ03 / GPIO3_DAT03	Channel 5	J7	Ю	OV _{DD}	
FTM2_CH6/ IRQ05 / GPIO3_DAT05	Channel 6	J9	Ю	OV _{DD}	
FTM2_CH7/ IRQ07 / GPIO3_DAT07	Channel 7	K6	Ю	OV _{DD}	
	Controller Area No	etwork	•		•
CAN1_RX/IIC3_SDA/GPIO1_DAT28 /EVT6_B	Receive Data	J5	1	OVDD	1
CAN1_TX/IIC3_SCL/ GPIO1_DAT29 /EVT5_B	Transmit Data	H5	0	OVDD	1
CAN2_RX/IIC4_SDA/GPIO1_DAT26 /EVT8_B	Receive Data	L5	1	OVDD	1
CAN2_TX/IIC4_SCL/ GPIO1_DAT27 /EVT7_B	Transmit Data	K5	0	OVDD	1
	Power-On-Reset Cor	nfiguration	1		1
cfg_eng_use0/ XSPI1_A_SCK / GPIO2_DAT22	Power-on-Reset Configuration	D22	1	OV _{DD}	1, 4
cfg_eng_use2/ UART2_RTS_B / GPIO1_DAT05 / UART4_SOUT	Power-on-Reset Configuration	C5	1	OVDD	1, 4
cfg_gpinput0/SDHC1_DAT0/ GPIO1_DAT17/SPI1_SIN	General Input	F1	1	EV _{DD}	1, 4
cfg_gpinput1/SDHC1_DAT1/ GPIO1_DAT18/SPI1_PCS2	General Input	E2	1	EV _{DD}	1, 4
cfg_gpinput2/SDHC1_DAT2/ GPIO1_DAT19/SPI1_PCS1	General Input	C1	1	EV _{DD}	1, 4
cfg_gpinput3/SDHC1_DAT3/ GPIO1_DAT20/SPI1_PCS0	General Input	C2	I	EV _{DD}	1, 4
cfg_gpinput4/SDHC2_DAT0/ GPIO2_DAT11/SPI2_SIN/ XSPI1_B_DATA0	General Input	A23	I	OV _{DD}	1, 4
cfg_gpinput5/SDHC2_DAT1/ GPIO2_DAT12/SPI2_PCS2/ XSPI1_B_DATA1	General Input	C24	I	OVDD	1, 4
cfg_gpinput6/SDHC2_DAT2/ GPIO2_DAT13/SPI2_PCS1/ XSPI1_B_DATA2	General Input	B23	I	OV _{DD}	1, 4
cfg_gpinput7/SDHC2_DAT3/ GPIO2_DAT14/SPI2_PCS0/ XSPI1_B_DATA3	General Input	A24	I	OVDD	1, 4
cfg_rcw_src0/UART2_SOUT/ GPIO1_DAT07	Reset Configuration Word	D6	I	OV _{DD}	1, 4

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
cfg_rcw_src1/UART1_SOUT/ GPIO1_DAT11	Reset Configuration Word	B6	1	OV _{DD}	1, 4
cfg_rcw_src2/ASLEEP/ GPIO2_DAT06/EVT9_B	Reset Configuration Word	M7	1	OV _{DD}	1, 4
cfg_rcw_src3/CLK_OUT/ GPIO2_DAT07/FTM1_CH1	Reset Configuration Word	L6	I	OV _{DD}	1, 4
cfg_soc_use/ USB1_DRVVBUS / GPIO4_DAT25	Power-on-Reset Configuration	A7	1	OV _{DD}	1, 4
cfg_svr0/ XSPI1_A_CS0_B / GPIO2_DAT21	Power-on-Reset Configuration	C23	1	OV _{DD}	1, 4
cfg_svr1/ XSPI1_A_CS1_B / GPIO2_DAT20	Power-on-Reset Configuration	D23	1	OVDD	1, 4
	SPI1	•	•		•
SPI1_PCS0/SDHC1_DAT3/ GPIO1_DAT20/cfg_gpinput3	SPI Chip Select	C2	0	EV _{DD}	1
SPI1_PCS1/SDHC1_DAT2/ GPIO1_DAT19/cfg_gpinput2	SPI Chip Select	C1	0	EVDD	1
SPI1_PCS2/SDHC1_DAT1/ GPIO1_DAT18/cfg_gpinput1	SPI Chip Select	E2	0	EVDD	1
SPI1_PCS3/SPI3_PCS0/ GPI01_DAT15/SDHC1_VSEL /SDHC1_DAT4	SPI Chip Select	A3	0	OV _{DD}	1
SPI1_SCK/SDHC1_CLK/ GPIO1_DAT16	Serial Clock	D1	0	EVDD	1
SPI1_SIN/SDHC1_DAT0/ GPIO1_DAT17/cfg_gpinput0	Serial Data Input	F1	I	EVDD	1
SPI1_SOUT/SDHC1_CMD/ GPIO1_DAT21	Serial Data Output	E1	0	EV _{DD}	1
	SPI2	1		ı	I
SPI2_PCS0/SDHC2_DAT3/ GPIO2_DAT14/XSPI1_B_DATA3/ cfg_gpinput7	SPI Chip Select	A24	0	OV _{DD}	1
SPI2_PCS1/SDHC2_DAT2/ GPIO2_DAT13/XSPI1_B_DATA2/ cfg_gpinput6	SPI Chip Select	B23	0	OVDD	1
SPI2_PCS2/SDHC2_DAT1/ GPIO2_DAT12/XSPI1_B_DATA1/ cfg_gpinput5	SPI Chip Select	C24	0	OV _{DD}	1
SPI2_PCS3/SDHC2_DS/ GPIO2_DAT10/XSPI1_B_DQS	SPI Chip Select	C25	0	OVDD	1
SPI2_SCK/SDHC2_CLK/ GPIO2_DAT09/XSPI1_B_SCK	Serial Clock	A25	0	OVDD	1

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SPI2_SIN/SDHC2_DAT0/ GPIO2_DAT11/XSPI1_B_DATA0/ cfg_gpinput4	Serial Data Input	A23	I	OV _{DD}	1
SPI2_SOUT/SDHC2_CMD/ GPIO2_DAT19/XSPI1_B_CS1_B	Serial Data Output	B25	0	OVDD	1
	SPI3	1			
SPI3_PCS0/GPIO1_DAT15/ SPI1_PCS3/SDHC1_VSEL/ SDHC1_DAT4	SPI Chip Select	A3	0	OV _{DD}	1
SPI3_PCS1/GPIO1_DAT14/ SDHC1_CMD_DIR/SDHC1_DAT5	SPI Chip Select	A4	0	OV _{DD}	1
SPI3_PCS2/GPIO1_DAT13/ SDHC1_DAT0_DIR/ SDHC1_DAT6	SPI Chip Select	B3	0	OV _{DD}	1
SPI3_PCS3/GPIO1_DAT12/ SDHC1_DAT123_DIR / SDHC1_DAT7	SPI Chip Select	C3	0	OV _{DD}	1
SPI3_SCK/GPIO4_DAT29/ SDHC1_DS	Serial Clock	B2	0	OV _{DD}	1
SPI3_SIN/GPIO1_DAT24/ SDHC1_CLK_SYNC_IN / IIC5_SDA	Serial Data Input	D3	I	OV _{DD}	1
SPI3_SOUT/GPIO1_DAT25/ SDHC1_CLK_SYNC_OUT/IIC5_SCL	Serial Data Output	C4	0	OV _{DD}	1
	IEEE 1588		•		•
TSEC_1588_ALARM_OUT1/ EC2_TXD2/GPIO4_DAT13	Alarm Out	L4	0	OVDD	1
TSEC_1588_ALARM_OUT2/ EC2_TXD3/GPIO4_DAT12	Alarm Out	L3	0	OV _{DD}	1
TSEC_1588_CLK_IN/ EC2_RX_CLK /GPIO4_DAT22	Clock Input	L1	I	OVDD	1
TSEC_1588_CLK_OUT/ EC2_TXD1 /GPIO4_DAT14	Clock Out	M3	0	OV _{DD}	1
TSEC_1588_PULSE_OUT1/ EC2_RXD1/GPIO4_DAT20	Pulse Out	N1	0	OV _{DD}	1
TSEC_1588_PULSE_OUT2/ EC2_TXD0/GPIO4_DAT15	Pulse Out	N3	0	OV _{DD}	1
TSEC_1588_TRIG_IN1/ EC2_RX_DV /GPIO4_DAT23	Trigger In	P1	I	OV _{DD}	1
TSEC_1588_TRIG_IN2/ EC2_RXD0 /GPIO4_DAT21	Trigger In	N2	I	OV _{DD}	1
	Power and Ground	Signals		ı	
GND001	GND	A2			
GND002	GND	A8			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND003	GND	A10			
GND004	GND	A28			
GND005	GND	A35			
GND006	GND	B1			
GND007	GND	B4			
GND008	GND	B8			
GND009	GND	B10			
GND010	GND	B12			
GND011	GND	B24			
GND012	GND	B26			
GND013	GND	B28			
GND014	GND	B30			
GND015	GND	B32			
GND016	GND	C7			
GND017	GND	C9			
GND018	GND	C11			
GND019	GND	C22			
GND020	GND	C28			
GND021	GND	C35			
GND022	GND	D2			
GND023	GND	D4			
GND024	GND	D7			
GND025	GND	D9			
GND026	GND	D11			
GND027	GND	D25			
GND028	GND	D30			
GND029	GND	D33			
GND030	GND	E8			
GND031	GND	E10			
GND032	GND	E12			
GND033	GND	E22			
GND034	GND	E28			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND035	GND	E36			
GND036	GND	F2			
GND037	GND	F4			
GND038	GND	F7			
GND039	GND	F24			
GND040	GND	F26			
GND041	GND	F28			
GND042	GND	F30			
GND043	GND	F34			
GND044	GND	G9			
GND045	GND	G11			
GND046	GND	G28			
GND047	GND	G32			
GND048	GND	G36			
GND049	GND	H2			
GND050	GND	H4			
GND051	GND	H12			
GND052	GND	H23			
GND053	GND	H24			
GND054	GND	H25			
GND055	GND	H28			
GND056	GND	H30			
GND057	GND	H34			
GND058	GND	J6			
GND059	GND	J8			
GND060	GND	J10			
GND061	GND	J32			
GND062	GND	J36			
GND063	GND	K2			
GND064	GND	K4			
GND065	GND	K23			
GND066	GND	K24			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND067	GND	K25			
GND068	GND	K26			
GND069	GND	K28			
GND070	GND	K30			
GND071	GND	K34			
GND072	GND	L7			
GND073	GND	L12			
GND074	GND	L13			
GND075	GND	L32			
GND076	GND	L36			
GND077	GND	M2			
GND078	GND	M4			
GND079	GND	M6			
GND080	GND	M8			
GND081	GND	M11			
GND082	GND	M21			
GND083	GND	M22			
GND084	GND	M23			
GND085	GND	M24			
GND086	GND	M25			
GND087	GND	M28			
GND088	GND	M34			
GND089	GND	N5			
GND090	GND	N7			
GND091	GND	N10			
GND092	GND	N12			
GND093	GND	N26			
GND094	GND	N28			
GND095	GND	N30			
GND096	GND	N32			
GND097	GND	N36			
GND098	GND	P2			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND099	GND	P5			
GND100	GND	P6			
GND101	GND	P7			
GND102	GND	P8			
GND103	GND	P9			
GND104	GND	P10			
GND105	GND	P13			
GND106	GND	P21			
GND107	GND	P23			
GND108	GND	P25			
GND109	GND	P27			
GND110	GND	P30			
GND111	GND	P34			
GND112	GND	R4			
GND113	GND	R10			
GND114	GND	R12			
GND115	GND	R14			
GND116	GND	R16			
GND117	GND	R18			
GND118	GND	R20			
GND119	GND	R22			
GND120	GND	R24			
GND121	GND	R26			
GND122	GND	R28			
GND123	GND	R30			
GND124	GND	R32			
GND125	GND	R36			
GND126	GND	T1			
GND127	GND	Т3			
GND128	GND	Т6			
GND129	GND	T10			
GND130	GND	T13			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND131	GND	T15			
GND132	GND	T17			
GND133	GND	T19			
GND134	GND	T21			
GND135	GND	T23			
GND136	GND	T25			
GND137	GND	T27			
GND138	GND	T30			
GND139	GND	T34			
GND140	GND	U4			
GND141	GND	U8			
GND142	GND	U10			
GND143	GND	U12			
GND144	GND	U14			
GND145	GND	U16			
GND146	GND	U18			
GND147	GND	U20			
GND148	GND	U22			
GND149	GND	U24			
GND150	GND	U26			
GND151	GND	U30			
GND152	GND	U32			
GND153	GND	U36			
GND154	GND	V6			
GND155	GND	V10			
GND156	GND	V13			
GND157	GND	V15			
GND158	GND	V17			
GND159	GND	V19			
GND160	GND	V21			
GND161	GND	V23			
GND162	GND	V25			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND163	GND	V27			
GND164	GND	V30			
GND165	GND	V34			
GND166	GND	W4			
GND167	GND	W8			
GND168	GND	W10			
GND169	GND	W12			
GND170	GND	W14			
GND171	GND	W16			
GND172	GND	W18			
GND173	GND	W20			
GND174	GND	W22			
GND175	GND	W24			
GND176	GND	W26			
GND177	GND	W28			
GND178	GND	W30			
GND179	GND	Y6			
GND180	GND	Y10			
GND181	GND	Y13			
GND182	GND	Y15			
GND183	GND	Y17			
GND184	GND	Y19			
GND185	GND	Y21			
GND186	GND	Y23			
GND187	GND	Y25			
GND188	GND	Y27			
GND189	GND	Y30			
GND190	GND	Y32			
GND191	GND	Y35			
GND192	GND	Y37			
GND193	GND	AA4			
GND194	GND	AA8			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND195	GND	AA10			
GND196	GND	AA12			
GND197	GND	AA14			
GND198	GND	AA16			
GND199	GND	AA18			
GND200	GND	AA20			
GND201	GND	AA22			
GND202	GND	AA24			
GND203	GND	AA26			
GND204	GND	AA28			
GND205	GND	AA30			
GND206	GND	AB6			
GND207	GND	AB10			
GND208	GND	AB13			
GND209	GND	AB15			
GND210	GND	AB17			
GND211	GND	AB19			
GND212	GND	AB21			
GND213	GND	AB23			
GND214	GND	AB25			
GND215	GND	AB27			
GND216	GND	AB30			
GND217	GND	AB34			
GND218	GND	AC4			
GND219	GND	AC8			
GND220	GND	AC10			
GND221	GND	AC14			
GND222	GND	AC16			
GND223	GND	AC18			
GND224	GND	AC20			
GND225	GND	AC22			
GND226	GND	AC24			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND227	GND	AC26			
GND228	GND	AC30			
GND229	GND	AC32			
GND230	GND	AC36			
GND231	GND	AD6			
GND232	GND	AD10			
GND233	GND	AD13			
GND234	GND	AD15			
GND235	GND	AD17			
GND236	GND	AD19			
GND237	GND	AD21			
GND238	GND	AD23			
GND239	GND	AD25			
GND240	GND	AD27			
GND241	GND	AD30			
GND242	GND	AD34			
GND243	GND	AE4			
GND244	GND	AE8			
GND245	GND	AE10			
GND246	GND	AE12			
GND247	GND	AE14			
GND248	GND	AE16			
GND249	GND	AE18			
GND250	GND	AE20			
GND251	GND	AE22			
GND252	GND	AE24			
GND253	GND	AE26			
GND254	GND	AE28			
GND255	GND	AE30			
GND256	GND	AE32			
GND257	GND	AE36			
GND258	GND	AF6			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND259	GND	AF10			
GND260	GND	AF27			
GND261	GND	AF30			
GND262	GND	AF34			
GND263	GND	AG4			
GND264	GND	AG9			
GND265	GND	AG11			
GND266	GND	AG30			
GND267	GND	AG32			
GND268	GND	AG36			
GND269	GND	AH7			
GND270	GND	AH11			
GND271	GND	AH28			
GND272	GND	AH34			
GND273	GND	AJ5			
GND274	GND	AJ10			
GND275	GND	AJ32			
GND276	GND	AJ36			
GND277	GND	AK4			
GND278	GND	AK7			
GND279	GND	AK9			
GND280	GND	AK28			
GND281	GND	AK30			
GND282	GND	AK34			
GND283	GND	AL5			
GND284	GND	AL32			
GND285	GND	AL36			
GND286	GND	AM3			
GND287	GND	AM8			
GND288	GND	AM28			
GND289	GND	AM30			
GND290	GND	AM34			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
GND291	GND	AN6			
GND292	GND	AN32			
GND293	GND	AN36			
GND294	GND	AP3			
GND295	GND	AP5			
GND296	GND	AP30			
GND297	GND	AP34			
GND298	GND	AR8			
GND299	GND	AR28			
GND300	GND	AR36			
GND301	GND	AT4			
GND302	GND	AT6			
GND303	GND	AT30			
GND304	GND	AT33			
GND305	GND	AU3			
GND306	GND	AU8			
GND307	GND	AU28			
GND308	GND	AU35			
GND309	GND	AV4			
GND310	GND	AV6			
GND311	GND	AV30			
GND312	GND	AV32			
GND313	GND	AW2			
GND314	GND	AW35			
SENSEGND_CA	GND Sense pin	J24			
SENSEGND_CB	GND Sense pin	AG26			
SENSEGND_PL	GND Sense pin	AJ11			
SD_GND01	SerDes 1 and SerDes 2 Ground	AG12			
SD_GND02	SerDes 1 and SerDes 2 Ground	AG13			
SD_GND03	SerDes 1 and SerDes 2 Ground	AG14			
SD_GND04	SerDes 1 and SerDes 2 Ground	AG15			
SD_GND05	SerDes 1 and SerDes 2 Ground	AG16			
SD_GND06	SerDes 1 and SerDes 2 Ground	AG17			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD_GND07	SerDes 1 and SerDes 2 Ground	AG18			
SD_GND08	SerDes 1 and SerDes 2 Ground	AG19			
SD_GND09	SerDes 1 and SerDes 2 Ground	AG20			
SD_GND10	SerDes 1 and SerDes 2 Ground	AG21			
SD_GND11	SerDes 1 and SerDes 2 Ground	AG22			
SD_GND12	SerDes 1 and SerDes 2 Ground	AG23			
SD_GND13	SerDes 1 and SerDes 2 Ground	AG24			
SD_GND14	SerDes 1 and SerDes 2 Ground	AG25			
SD_GND15	SerDes 1 and SerDes 2 Ground	AH16			
SD_GND16	SerDes 1 and SerDes 2 Ground	AH19			
SD_GND17	SerDes 1 and SerDes 2 Ground	AH22			
SD_GND18	SerDes 1 and SerDes 2 Ground	AH25			
SD_GND19	SerDes 1 and SerDes 2 Ground	AH27			
SD_GND20	SerDes 1 and SerDes 2 Ground	AJ12			
SD_GND21	SerDes 1 and SerDes 2 Ground	AK10			
SD_GND22	SerDes 1 and SerDes 2 Ground	AK11			
SD_GND23	SerDes 1 and SerDes 2 Ground	AK12			
SD_GND24	SerDes 1 and SerDes 2 Ground	AK13			
SD_GND25	SerDes 1 and SerDes 2 Ground	AK14			
SD_GND26	SerDes 1 and SerDes 2 Ground	AK15			
SD_GND27	SerDes 1 and SerDes 2 Ground	AK16			
SD_GND28	SerDes 1 and SerDes 2 Ground	AK17			
SD_GND29	SerDes 1 and SerDes 2 Ground	AK18			
SD_GND30	SerDes 1 and SerDes 2 Ground	AK19			
SD_GND31	SerDes 1 and SerDes 2 Ground	AK20			
SD_GND32	SerDes 1 and SerDes 2 Ground	AK21			
SD_GND33	SerDes 1 and SerDes 2 Ground	AK22			
SD_GND34	SerDes 1 and SerDes 2 Ground	AK23			
SD_GND35	SerDes 1 and SerDes 2 Ground	AK24			
SD_GND36	SerDes 1 and SerDes 2 Ground	AK25			
SD_GND37	SerDes 1 and SerDes 2 Ground	AK26			
SD_GND38	SerDes 1 and SerDes 2 Ground	AK27			
SD_GND39	SerDes 1 and SerDes 2 Ground	AL9			
SD_GND40	SerDes 1 and SerDes 2 Ground	AL11			
	I.	1		1	1

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD_GND41	SerDes 1 and SerDes 2 Ground	AL13			
SD_GND42	SerDes 1 and SerDes 2 Ground	AL15			
SD_GND43	SerDes 1 and SerDes 2 Ground	AL17			
SD_GND44	SerDes 1 and SerDes 2 Ground	AL19			
SD_GND45	SerDes 1 and SerDes 2 Ground	AL21			
SD_GND46	SerDes 1 and SerDes 2 Ground	AL23			
SD_GND47	SerDes 1 and SerDes 2 Ground	AL25			
SD_GND48	SerDes 1 and SerDes 2 Ground	AL27			
SD_GND49	SerDes 1 and SerDes 2 Ground	AM9			
SD_GND50	SerDes 1 and SerDes 2 Ground	AM11			
SD_GND51	SerDes 1 and SerDes 2 Ground	AM13			
SD_GND52	SerDes 1 and SerDes 2 Ground	AM15			
SD_GND53	SerDes 1 and SerDes 2 Ground	AM17			
SD_GND54	SerDes 1 and SerDes 2 Ground	AM18			
SD_GND55	SerDes 1 and SerDes 2 Ground	AM19			
SD_GND56	SerDes 1 and SerDes 2 Ground	AM21			
SD_GND57	SerDes 1 and SerDes 2 Ground	AM23			
SD_GND58	SerDes 1 and SerDes 2 Ground	AM25			
SD_GND59	SerDes 1 and SerDes 2 Ground	AM27			
SD_GND60	SerDes 1 and SerDes 2 Ground	AN8			
SD_GND61	SerDes 1 and SerDes 2 Ground	AN10			
SD_GND62	SerDes 1 and SerDes 2 Ground	AN12			
SD_GND63	SerDes 1 and SerDes 2 Ground	AN13			
SD_GND64	SerDes 1 and SerDes 2 Ground	AN14			
SD_GND65	SerDes 1 and SerDes 2 Ground	AN16			
SD_GND66	SerDes 1 and SerDes 2 Ground	AN18			
SD_GND67	SerDes 1 and SerDes 2 Ground	AN20			
SD_GND68	SerDes 1 and SerDes 2 Ground	AN22			
SD_GND69	SerDes 1 and SerDes 2 Ground	AN23			
SD_GND70	SerDes 1 and SerDes 2 Ground	AN24			
SD_GND71	SerDes 1 and SerDes 2 Ground	AN26			
SD_GND72	SerDes 1 and SerDes 2 Ground	AN28			
SD_GND73	SerDes 1 and SerDes 2 Ground	AP8			
SD_GND74	SerDes 1 and SerDes 2 Ground	AP10			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD_GND75	SerDes 1 and SerDes 2 Ground	AP12			
SD_GND76	SerDes 1 and SerDes 2 Ground	AP14			
SD_GND77	SerDes 1 and SerDes 2 Ground	AP16			
SD_GND78	SerDes 1 and SerDes 2 Ground	AP18			
SD_GND79	SerDes 1 and SerDes 2 Ground	AP20			
SD_GND80	SerDes 1 and SerDes 2 Ground	AP22			
SD_GND81	SerDes 1 and SerDes 2 Ground	AP24			
SD_GND82	SerDes 1 and SerDes 2 Ground	AP26			
SD_GND83	SerDes 1 and SerDes 2 Ground	AP28			
SD_GND84	SerDes 1 and SerDes 2 Ground	AR9			
SD_GND85	SerDes 1 and SerDes 2 Ground	AR10			
SD_GND86	SerDes 1 and SerDes 2 Ground	AR11			
SD_GND87	SerDes 1 and SerDes 2 Ground	AR12			
SD_GND88	SerDes 1 and SerDes 2 Ground	AR14			
SD_GND89	SerDes 1 and SerDes 2 Ground	AR15			
SD_GND90	SerDes 1 and SerDes 2 Ground	AR16			
SD_GND91	SerDes 1 and SerDes 2 Ground	AR17			
SD_GND92	SerDes 1 and SerDes 2 Ground	AR18			
SD_GND93	SerDes 1 and SerDes 2 Ground	AR19			
SD_GND94	SerDes 1 and SerDes 2 Ground	AR20			
SD_GND95	SerDes 1 and SerDes 2 Ground	AR21			
SD_GND96	SerDes 1 and SerDes 2 Ground	AR22			
SD_GND97	SerDes 1 and SerDes 2 Ground	AR24			
SD_GND98	SerDes 1 and SerDes 2 Ground	AR25			
SD_GND99	SerDes 1 and SerDes 2 Ground	AR26			
SD_GND100	SerDes 1 and SerDes 2 Ground	AR27			
SD_GND101	SerDes 1 and SerDes 2 Ground	AT9			
SD_GND102	SerDes 1 and SerDes 2 Ground	AT11			
SD_GND103	SerDes 1 and SerDes 2 Ground	AT13			
SD_GND104	SerDes 1 and SerDes 2 Ground	AT15			
SD_GND105	SerDes 1 and SerDes 2 Ground	AT17			
SD_GND106	SerDes 1 and SerDes 2 Ground	AT19			
SD_GND107	SerDes 1 and SerDes 2 Ground	AT21			
SD_GND108	SerDes 1 and SerDes 2 Ground	AT23			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD_GND109	SerDes 1 and SerDes 2 Ground	AT25			
SD_GND110	SerDes 1 and SerDes 2 Ground	AT27			
SD_GND111	SerDes 1 and SerDes 2 Ground	AU9			
SD_GND112	SerDes 1 and SerDes 2 Ground	AU11			
SD_GND113	SerDes 1 and SerDes 2 Ground	AU13			
SD_GND114	SerDes 1 and SerDes 2 Ground	AU15			
SD_GND115	SerDes 1 and SerDes 2 Ground	AU17			
SD_GND116	SerDes 1 and SerDes 2 Ground	AU19			
SD_GND117	SerDes 1 and SerDes 2 Ground	AU21			
SD_GND118	SerDes 1 and SerDes 2 Ground	AU23			
SD_GND119	SerDes 1 and SerDes 2 Ground	AU25			
SD_GND120	SerDes 1 and SerDes 2 Ground	AU27			
SD_GND121	SerDes 1 and SerDes 2 Ground	AV8			
SD_GND122	SerDes 1 and SerDes 2 Ground	AV10			
SD_GND123	SerDes 1 and SerDes 2 Ground	AV12			
SD_GND124	SerDes 1 and SerDes 2 Ground	AV14			
SD_GND125	SerDes 1 and SerDes 2 Ground	AV16			
SD_GND126	SerDes 1 and SerDes 2 Ground	AV18			
SD_GND127	SerDes 1 and SerDes 2 Ground	AV20			
SD_GND128	SerDes 1 and SerDes 2 Ground	AV22			
SD_GND129	SerDes 1 and SerDes 2 Ground	AV24			
SD_GND130	SerDes 1 and SerDes 2 Ground	AV26			
SD_GND131	SerDes 1 and SerDes 2 Ground	AV28			
SD_GND132	SerDes 1 and SerDes 2 Ground	AW8			
SD_GND133	SerDes 1 and SerDes 2 Ground	AW10			
SD_GND134	SerDes 1 and SerDes 2 Ground	AW12			
SD_GND135	SerDes 1 and SerDes 2 Ground	AW14			
SD_GND136	SerDes 1 and SerDes 2 Ground	AW16			
SD_GND137	SerDes 1 and SerDes 2 Ground	AW18			
SD_GND138	SerDes 1 and SerDes 2 Ground	AW20			
SD_GND139	SerDes 1 and SerDes 2 Ground	AW22			
SD_GND140	SerDes 1 and SerDes 2 Ground	AW24			
SD_GND141	SerDes 1 and SerDes 2 Ground	AW26			
SD_GND142	SerDes 1 and SerDes 2 Ground	AW28			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD3_GND01	SerDes3 core logic ground	A12			
SD3_GND02	SerDes3 core logic ground	A14			
SD3_GND03	SerDes3 core logic ground	A16			
SD3_GND04	SerDes3 core logic ground	A18			
SD3_GND05	SerDes3 core logic ground	A20			
SD3_GND06	SerDes3 core logic ground	A22			
SD3_GND07	SerDes3 core logic ground	B14			
SD3_GND08	SerDes3 core logic ground	B16			
SD3_GND09	SerDes3 core logic ground	B18			
SD3_GND10	SerDes3 core logic ground	B20			
SD3_GND11	SerDes3 core logic ground	B22			
SD3_GND12	SerDes3 core logic ground	C13			
SD3_GND13	SerDes3 core logic ground	C15			
SD3_GND14	SerDes3 core logic ground	C17			
SD3_GND15	SerDes3 core logic ground	C19			
SD3_GND16	SerDes3 core logic ground	C21			
SD3_GND17	SerDes3 core logic ground	D13			
SD3_GND18	SerDes3 core logic ground	D15			
SD3_GND19	SerDes3 core logic ground	D17			
SD3_GND20	SerDes3 core logic ground	D19			
SD3_GND21	SerDes3 core logic ground	D21			
SD3_GND22	SerDes3 core logic ground	E13			
SD3_GND23	SerDes3 core logic ground	E14			
SD3_GND24	SerDes3 core logic ground	E15			
SD3_GND25	SerDes3 core logic ground	E16			
SD3_GND26	SerDes3 core logic ground	E18			
SD3_GND27	SerDes3 core logic ground	E19			
SD3_GND28	SerDes3 core logic ground	E20			
SD3_GND29	SerDes3 core logic ground	E21			
SD3_GND30	SerDes3 core logic ground	F12			
SD3_GND31	SerDes3 core logic ground	F14			
SD3_GND32	SerDes3 core logic ground	F16			

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD3_GND33	SerDes3 core logic ground	F18			
SD3_GND34	SerDes3 core logic ground	F20			
SD3_GND35	SerDes3 core logic ground	F22			
SD3_GND36	SerDes3 core logic ground	G12			
SD3_GND37	SerDes3 core logic ground	G14			
SD3_GND38	SerDes3 core logic ground	G16			
SD3_GND39	SerDes3 core logic ground	G17			
SD3_GND40	SerDes3 core logic ground	G18			
SD3_GND41	SerDes3 core logic ground	G20			
SD3_GND42	SerDes3 core logic ground	G22			
SD3_GND43	SerDes3 core logic ground	H13			
SD3_GND44	SerDes3 core logic ground	H15			
SD3_GND45	SerDes3 core logic ground	H17			
SD3_GND46	SerDes3 core logic ground	H19			
SD3_GND47	SerDes3 core logic ground	H21			
SD3_GND48	SerDes3 core logic ground	H22			
SD3_GND49	SerDes3 core logic ground	J13			
SD3_GND50	SerDes3 core logic ground	J15			
SD3_GND51	SerDes3 core logic ground	J17			
SD3_GND52	SerDes3 core logic ground	J19			
SD3_GND53	SerDes3 core logic ground	J21			
SD3_GND54	SerDes3 core logic ground	K13			
SD3_GND55	SerDes3 core logic ground	K14			
SD3_GND56	SerDes3 core logic ground	K15			
SD3_GND57	SerDes3 core logic ground	K16			
SD3_GND58	SerDes3 core logic ground	K17			
SD3_GND59	SerDes3 core logic ground	K18			
SD3_GND60	SerDes3 core logic ground	K19			
SD3_GND61	SerDes3 core logic ground	K20			
SD3_GND62	SerDes3 core logic ground	K21			
SD3_GND63	SerDes3 core logic ground	L14			
SD3_GND64	SerDes3 core logic ground	L21			

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD3_GND65	SerDes3 core logic ground	N14			
SD3_GND66	SerDes3 core logic ground	N15			
SD3_GND67	SerDes3 core logic ground	N16			
SD3_GND68	SerDes3 core logic ground	N17			
SD3_GND69	SerDes3 core logic ground	N18			
SD3_GND70	SerDes3 core logic ground	N19			
SD3_GND71	SerDes3 core logic ground	N20			
OVDD01	General I/O supply	N21		OV _{DD}	
OVDD02	General I/O supply	N22		OV _{DD}	
OVDD03	General I/O supply	N23		OV _{DD}	
OVDD04	General I/O supply	N24		OV _{DD}	
OVDD05	General I/O supply	N25		OV _{DD}	
OVDD06	General I/O supply	R11		OV _{DD}	
OVDD07	General I/O supply	T11		OV _{DD}	
OVDD08	General I/O supply	U11		OV _{DD}	
OVDD09	General I/O supply	V11		OV _{DD}	
OVDD10	General I/O supply	W11		OV _{DD}	
OVDD11	General I/O supply	Y12		OV _{DD}	
OVDD12	General I/O supply	Y28		OV _{DD}	
EVDD	SDHC 1.8V	T12		EV _{DD}	
G1VDD01	DDR supply for port 1	A38		G1V _{DD}	
G1VDD02	DDR supply for port 1	B36		G1V _{DD}	
G1VDD03	DDR supply for port 1	B39		G1V _{DD}	
G1VDD04	DDR supply for port 1	D38		G1V _{DD}	
G1VDD05	DDR supply for port 1	F38		G1V _{DD}	
G1VDD06	DDR supply for port 1	H38		G1V _{DD}	
G1VDD07	DDR supply for port 1	J39		G1V _{DD}	
G1VDD08	DDR supply for port 1	K37		G1V _{DD}	
G1VDD09	DDR supply for port 1	L39		G1V _{DD}	
G1VDD10	DDR supply for port 1	M37		G1V _{DD}	
G1VDD11	DDR supply for port 1	N29		G1V _{DD}	
G1VDD12	DDR supply for port 1	P29		G1V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
G1VDD13	DDR supply for port 1	P38		G1V _{DD}	
G1VDD14	DDR supply for port 1	R29		G1V _{DD}	
G1VDD15	DDR supply for port 1	T29		G1V _{DD}	
G1VDD16	DDR supply for port 1	T38		G1V _{DD}	
G1VDD17	DDR supply for port 1	U29		G1V _{DD}	
G1VDD18	DDR supply for port 1	V29		G1V _{DD}	
G1VDD19	DDR supply for port 1	V38		G1V _{DD}	
G1VDD20	DDR supply for port 1	W29		G1V _{DD}	
G2VDD01	DDR supply for port 2	AA29		G2V _{DD}	
G2VDD02	DDR supply for port 2	AB29		G2V _{DD}	
G2VDD03	DDR supply for port 2	AB38		G2V _{DD}	
G2VDD04	DDR supply for port 2	AC29		G2V _{DD}	
G2VDD05	DDR supply for port 2	AD29	 	G2V _{DD}	
G2VDD06	DDR supply for port 2	AD38		G2V _{DD}	
G2VDD07	DDR supply for port 2	AE29	 	G2V _{DD}	
G2VDD08	DDR supply for port 2	AF29		G2V _{DD}	
G2VDD09	DDR supply for port 2	AF38		G2V _{DD}	
G2VDD10	DDR supply for port 2	AG29		G2V _{DD}	
G2VDD11	DDR supply for port 2	AH37		G2V _{DD}	
G2VDD12	DDR supply for port 2	AJ39		G2V _{DD}	
G2VDD13	DDR supply for port 2	AK37		G2V _{DD}	
G2VDD14	DDR supply for port 2	AL39	 	G2V _{DD}	
G2VDD15	DDR supply for port 2	AM38		G2V _{DD}	
G2VDD16	DDR supply for port 2	AP38		G2V _{DD}	
G2VDD17	DDR supply for port 2	AT38	 	G2V _{DD}	
G2VDD18	DDR supply for port 2	AV36		G2V _{DD}	
G2VDD19	DDR supply for port 2	AV39		G2V _{DD}	
G2VDD20	DDR supply for port 2	AW38		G2V _{DD}	
FA1_CVL	Internal Use Only	AJ28		FA1_CVL	12
FA2_DVL	Internal Use Only	L28		FA2_DVL	12
PROG_MTR	Internal Use Only	M27		PROG_MTR	12
TA_PROG_SFP	SFP Fuse Programming Override supply	M26		TA_PROG_SFP	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
TH_VDD	Thermal Monitor Unit supply	G23		TH_V _{DD}	
VDD01	Supply for cores and platform	N27		V_{DD}	
VDD02	Supply for cores and platform	P22		V _{DD}	
VDD03	Supply for cores and platform	P24		V_{DD}	
VDD04	Supply for cores and platform	P26		V_{DD}	
VDD05	Supply for cores and platform	R13		V _{DD}	
VDD06	Supply for cores and platform	R15		V _{DD}	
VDD07	Supply for cores and platform	R17		V _{DD}	
VDD08	Supply for cores and platform	R19		V_{DD}	
VDD09	Supply for cores and platform	R21		V_{DD}	
VDD10	Supply for cores and platform	R23		V_{DD}	
VDD11	Supply for cores and platform	R25		V_{DD}	
VDD12	Supply for cores and platform	T14		V_{DD}	
VDD13	Supply for cores and platform	T16		V_{DD}	
VDD14	Supply for cores and platform	T18		V_{DD}	
VDD15	Supply for cores and platform	T20		V_{DD}	
VDD16	Supply for cores and platform	T22		V_{DD}	
VDD17	Supply for cores and platform	T24		V_{DD}	
VDD18	Supply for cores and platform	T26		V_{DD}	
VDD19	Supply for cores and platform	U13		V_{DD}	
VDD20	Supply for cores and platform	U15		V_{DD}	
VDD21	Supply for cores and platform	U17		V_{DD}	
VDD22	Supply for cores and platform	U19		V _{DD}	
VDD23	Supply for cores and platform	U21		V_{DD}	
VDD24	Supply for cores and platform	U23		V _{DD}	
VDD25	Supply for cores and platform	U25		V_{DD}	
VDD26	Supply for cores and platform	V12		V_{DD}	
VDD27	Supply for cores and platform	V14		V _{DD}	
VDD28	Supply for cores and platform	V16		V _{DD}	
VDD29	Supply for cores and platform	V18		V _{DD}	
VDD30	Supply for cores and platform	V20		V _{DD}	
VDD31	Supply for cores and platform	V22		V _{DD}	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
VDD32	Supply for cores and platform	V24		V_{DD}	
VDD33	Supply for cores and platform	V26		V _{DD}	
VDD34	Supply for cores and platform	W13		V _{DD}	
VDD35	Supply for cores and platform	W15		V_{DD}	
VDD36	Supply for cores and platform	W17		V_{DD}	
VDD37	Supply for cores and platform	W19		V_{DD}	
VDD38	Supply for cores and platform	W21		V_{DD}	
VDD39	Supply for cores and platform	W23		V_{DD}	
VDD40	Supply for cores and platform	W25		V_{DD}	
VDD41	Supply for cores and platform	Y14		V_{DD}	
VDD42	Supply for cores and platform	Y16		V_{DD}	
VDD43	Supply for cores and platform	Y18		V_{DD}	
VDD44	Supply for cores and platform	Y20		V_{DD}	
VDD45	Supply for cores and platform	Y22		V_{DD}	
VDD46	Supply for cores and platform	Y24		V_{DD}	
VDD47	Supply for cores and platform	Y26		V_{DD}	
VDD48	Supply for cores and platform	AA13		V_{DD}	
VDD49	Supply for cores and platform	AA15		V_{DD}	
VDD50	Supply for cores and platform	AA17		V_{DD}	
VDD51	Supply for cores and platform	AA19		V_{DD}	
VDD52	Supply for cores and platform	AA21		V_{DD}	
VDD53	Supply for cores and platform	AA23		V_{DD}	
VDD54	Supply for cores and platform	AA25		V_{DD}	
VDD55	Supply for cores and platform	AB14		V_{DD}	
VDD56	Supply for cores and platform	AB16		V_{DD}	
VDD57	Supply for cores and platform	AB18		V_{DD}	
VDD58	Supply for cores and platform	AB20		V_{DD}	
VDD59	Supply for cores and platform	AB22		V _{DD}	
VDD60	Supply for cores and platform	AB24		V _{DD}	
VDD61	Supply for cores and platform	AB26		V _{DD}	
VDD62	Supply for cores and platform	AC13		V _{DD}	
VDD63	Supply for cores and platform	AC15		V _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
VDD64	Supply for cores and platform	AC17		V _{DD}	
VDD65	Supply for cores and platform	AC19		V _{DD}	
VDD66	Supply for cores and platform	AC21		V _{DD}	
VDD67	Supply for cores and platform	AC23		V _{DD}	
VDD68	Supply for cores and platform	AC25		V _{DD}	
VDD69	Supply for cores and platform	AD12		V _{DD}	
VDD70	Supply for cores and platform	AD14		V_{DD}	
VDD71	Supply for cores and platform	AD16		V_{DD}	
VDD72	Supply for cores and platform	AD18		V_{DD}	
VDD73	Supply for cores and platform	AD20		V_{DD}	
VDD74	Supply for cores and platform	AD22		V _{DD}	
VDD75	Supply for cores and platform	AD24		V _{DD}	
VDD76	Supply for cores and platform	AD26		V_{DD}	
VDD77	Supply for cores and platform	AE13		V _{DD}	
VDD78	Supply for cores and platform	AE15		V_{DD}	
VDD79	Supply for cores and platform	AE17		V _{DD}	
VDD80	Supply for cores and platform	AE19		V _{DD}	
VDD81	Supply for cores and platform	AE21		V_{DD}	
VDD82	Supply for cores and platform	AE23		V_{DD}	
VDD83	Supply for cores and platform	AE25		V _{DD}	
VDD84	Supply for cores and platform	AF26		V _{DD}	
TA_BB_VDD	Low Power Security Monitor supply	J26		TA_BB_V _{DD}	
SD3_SVDD1	SerDes3 core logic supply	P14		SD3_SV _{DD}	
SD3_SVDD2	SerDes3 core logic supply	P15		SD3_SV _{DD}	
SD3_SVDD3	SerDes3 core logic supply	P16		SD3_SV _{DD}	
SD3_SVDD4	SerDes3 core logic supply	P17		SD3_SV _{DD}	
SD3_SVDD5	SerDes3 core logic supply	P18		SD3_SV _{DD}	
SD3_SVDD6	SerDes3 core logic supply	P19		SD3_SV _{DD}	
SD3_SVDD7	SerDes3 core logic supply	P20		SD3_SV _{DD}	
AVDD1	Platform PLL supply	J23		AV _{DD}	
AVDD_SD3_PLLF	SerDes3 Analog PLL fast supply	L16		AV _{DD} _SD3_PLLF	
AVDD_SD3_PLLS	SerDes3 Analog PLL slow supply	L19		AV _{DD} _SD3_PLLS	

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
AVDD2	Core/platform PLL supply	L23		AV _{DD}	
AVDD3	Core/platform PLL supply	L24		AV _{DD}	
AVDD4	Core/platform PLL supply	L25		AV _{DD}	
AVDD5	Core/platform PLL supply	L26		AV _{DD}	
AVDD_D1	DDR PHY1 PLL supply	T28		AV _{DD} _D1	
AVDD_D2	DDR PHY2 PLL supply	AC28		AV _{DD} _D2	
AVDD_SD1_PLLS	SerDes1 Analog PLL slow supply	AJ16		AV _{DD} _SD1_PLLS	
AVDD_SD1_PLLF	SerDes1 Analog PLL slow supply	AJ19		AV _{DD} _SD1_PLLF	
AVDD_SD2_PLLF	SerDes2 Analog PLL fast supply	AJ22		AV _{DD} _SD2_PLLF	
AVDD_SD2_PLLS	SerDes2 Analog PLL fast supply	AJ25		AV _{DD} _SD2_PLLS	
USB_HVDD1	High voltage supply for High Speed operation	M12		USB_HV _{DD}	
USB_HVDD2	High voltage supply for High Speed operation	N11		USB_HV _{DD}	
USB_SDVDD1	Analog and digital high speed low voltage supply	P11		USB_SDV _{DD}	
USB_SDVDD2	Analog and digital high speed low voltage supply	P12		USB_SDV _{DD}	
USB_SVDD1	Analog and digital super speed low voltage supply	M13		USB_SV _{DD}	
USB_SVDD2	Analog and digital super speed low voltage supply	N13		USB_SV _{DD}	
SD_SVDD01	SerDes 1 and SerDes2 core logic supply	AF12		SD_SV _{DD}	
SD_SVDD02	SerDes 1 and SerDes2 core logic supply	AF13		SD_SV _{DD}	
SD_SVDD03	SerDes 1 and SerDes2 core logic supply	AF14		SD_SV _{DD}	
SD_SVDD04	SerDes 1 and SerDes2 core logic supply	AF15		SD_SV _{DD}	
SD_SVDD05	SerDes 1 and SerDes2 core logic supply	AF16		SD_SV _{DD}	
SD_SVDD06	SerDes 1 and SerDes2 core logic supply	AF17		SD_SV _{DD}	
SD_SVDD07	SerDes 1 and SerDes2 core logic supply	AF18		SD_SV _{DD}	
SD_SVDD08	SerDes 1 and SerDes2 core logic supply	AF19		SD_SV _{DD}	
SD_SVDD09	SerDes 1 and SerDes2 core logic supply	AF20		SD_SV _{DD}	
SD_SVDD10	SerDes 1 and SerDes2 core logic supply	AF21		SD_SV _{DD}	

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
SD_SVDD11	SerDes 1 and SerDes2 core logic supply	AF22		SD_SV _{DD}	
SD_SVDD12	SerDes 1 and SerDes2 core logic supply	AF23		SD_SV _{DD}	
SD_SVDD13	SerDes 1 and SerDes2 core logic supply	AF24		SD_SV _{DD}	
SD_SVDD14	SerDes 1 and SerDes2 core logic supply	AF25		SD_SV _{DD}	
SD_OVDD01	SerDes1 transceiver supply	AH12		SD_OV _{DD}	
SD_OVDD02	SerDes1 transceiver supply	AH13		SD_OV _{DD}	
SD_OVDD03	SerDes1 transceiver supply	AH14		SD_OV _{DD}	
SD_OVDD04	SerDes1 transceiver supply	AH15		SD_OV _{DD}	
SD_OVDD05	SerDes1 transceiver supply	AH17		SD_OV _{DD}	
SD_OVDD06	SerDes1 transceiver supply	AH18		SD_OV _{DD}	
SD_OVDD07	SerDes1 transceiver supply	AH20		SD_OV _{DD}	
SD_OVDD08	SerDes1 transceiver supply	AH21		SD_OV _{DD}	
SD_OVDD09	SerDes1 transceiver supply	AH23		SD_OV _{DD}	
SD_OVDD10	SerDes1 transceiver supply	AH24		SD_OV _{DD}	
SD3_OVDD1	SerDes3 transceiver supply	M14		SD3_OV _{DD}	
SD3_OVDD2	SerDes3 transceiver supply	M15		SD3_OV _{DD}	
SD3_OVDD3	SerDes3 transceiver supply	M16		SD3_OV _{DD}	
SD3_OVDD4	SerDes3 transceiver supply	M17		SD3_OV _{DD}	
SD3_OVDD5	SerDes3 transceiver supply	M18		SD3_OV _{DD}	
SD3_OVDD6	SerDes3 transceiver supply	M19		SD3_OV _{DD}	
SD3_OVDD7	SerDes3 transceiver supply	M20		SD3_OV _{DD}	
SENSEVDD_CA	VDD Sense pin	J25		SENSEVDD_CA	
SENSEVDD_CB	VDD Sense pin	AG27		SENSEVDD_CB	
SENSEVDD_PL	VDD Sense pin	AG10		SENSEVDD_PL	
	No Connection	n Pins			
NC_K11	No Connection	K11			10
NC_K22	No Connection	K22			10
NC_L8	No Connection	L8			10
NC_L9	No Connection	L9			10
NC_M5	No Connection	M5			10

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_P28	No Connection	P28			10
NC_R5	No Connection	R5			10
NC_R6	No Connection	R6			10
NC_R7	No Connection	R7			10
NC_R8	No Connection	R8			10
NC_R9	No Connection	R9			10
NC_R27	No Connection	R27			10
NC_T2	No Connection	T2			10
NC_T4	No Connection	T4			10
NC_T5	No Connection	T5			10
NC_T7	No Connection	Т7			10
NC_T8	No Connection	T8			10
NC_T9	No Connection	Т9			10
NC_U1	No Connection	U1			10
NC_U2	No Connection	U2			10
NC_U3	No Connection	U3			10
NC_U5	No Connection	U5			10
NC_U6	No Connection	U6			10
NC_U7	No Connection	U7			10
NC_U9	No Connection	U9			10
NC_U27	No Connection	U27			10
NC_V1	No Connection	V1			10
NC_V2	No Connection	V2			10
NC_V3	No Connection	V3			10
NC_V4	No Connection	V4			10
NC_V5	No Connection	V5			10
NC_V7	No Connection	V7			10
NC_V8	No Connection	V8			10
NC_V9	No Connection	V9			10
NC_V28	No Connection	V28			10
NC_W1	No Connection	W1			10
NC_W2	No Connection	W2			10

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_W3	No Connection	W3			10
NC_W5	No Connection	W5			10
NC_W6	No Connection	W6			10
NC_W7	No Connection	W7			10
NC_W9	No Connection	W9			10
NC_W27	No Connection	W27			10
NC_Y1	No Connection	Y1			10
NC_Y2	No Connection	Y2			10
NC_Y3	No Connection	Y3			10
NC_Y4	No Connection	Y4			10
NC_Y5	No Connection	Y5			10
NC_Y7	No Connection	Y7			10
NC_Y8	No Connection	Y8			10
NC_Y9	No Connection	Y9			10
NC_Y11	No Connection	Y11			10
NC_AA1	No Connection	AA1			10
NC_AA2	No Connection	AA2			10
NC_AA3	No Connection	AA3			10
NC_AA5	No Connection	AA5			10
NC_AA6	No Connection	AA6			10
NC_AA7	No Connection	AA7			10
NC_AA9	No Connection	AA9			10
NC_AA11	No Connection	AA11			10
NC_AA27	No Connection	AA27			10
NC_AB1	No Connection	AB1			10
NC_AB2	No Connection	AB2			10
NC_AB3	No Connection	AB3			10
NC_AB4	No Connection	AB4			10
NC_AB5	No Connection	AB5			10
NC_AB7	No Connection	AB7			10
NC_AB8	No Connection	AB8			10
NC_AB9	No Connection	AB9			10

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_AB11	No Connection	AB11			10
NC_AB12	No Connection	AB12			10
NC_AC1	No Connection	AC1			10
NC_AC2	No Connection	AC2			10
NC_AC3	No Connection	AC3			10
NC_AC5	No Connection	AC5			10
NC_AC6	No Connection	AC6			10
NC_AC7	No Connection	AC7			10
NC_AC9	No Connection	AC9			10
NC_AC11	No Connection	AC11			10
NC_AC12	No Connection	AC12			10
NC_AC27	No Connection	AC27			10
NC_AD1	No Connection	AD1			10
NC_AD2	No Connection	AD2			10
NC_AD3	No Connection	AD3			10
NC_AD4	No Connection	AD4			10
NC_AD5	No Connection	AD5			10
NC_AD7	No Connection	AD7			10
NC_AD8	No Connection	AD8			10
NC_AD9	No Connection	AD9			10
NC_AD11	No Connection	AD11			10
NC_AD28	No Connection	AD28			10
NC_AE1	No Connection	AE1			10
NC_AE2	No Connection	AE2			10
NC_AE3	No Connection	AE3			10
NC_AE5	No Connection	AE5			10
NC_AE6	No Connection	AE6			10
NC_AE7	No Connection	AE7			10
NC_AE9	No Connection	AE9			10
NC_AE11	No Connection	AE11			10
NC_AE27	No Connection	AE27			10
NC_AF1	No Connection	AF1			10

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_AF2	No Connection	AF2			10
NC_AF3	No Connection	AF3			10
NC_AF4	No Connection	AF4			10
NC_AF5	No Connection	AF5			10
NC_AF7	No Connection	AF7			10
NC_AF8	No Connection	AF8			10
NC_AF9	No Connection	AF9			10
NC_AF11	No Connection	AF11			10
NC_AF28	No Connection	AF28			10
NC_AG1	No Connection	AG1			10
NC_AG2	No Connection	AG2			10
NC_AG3	No Connection	AG3			10
NC_AG5	No Connection	AG5			10
NC_AG6	No Connection	AG6			10
NC_AG7	No Connection	AG7			10
NC_AG8	No Connection	AG8			10
NC_AG28	No Connection	AG28			10
NC_AH1	No Connection	AH1			10
NC_AH2	No Connection	AH2			10
NC_AH3	No Connection	AH3			10
NC_AH4	No Connection	AH4			10
NC_AH5	No Connection	AH5			10
NC_AH6	No Connection	AH6			10
NC_AH8	No Connection	AH8			10
NC_AH9	No Connection	AH9			10
NC_AH10	No Connection	AH10			10
NC_AJ1	No Connection	AJ1			10
NC_AJ2	No Connection	AJ2			10
NC_AJ3	No Connection	AJ3			10
NC_AJ4	No Connection	AJ4			10
NC_AJ6	No Connection	AJ6			10
NC_AJ7	No Connection	AJ7			10

Teledyne Confidential; Commercially Sensitive Business Data

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_AJ8	No Connection	AJ8			10
NC_AJ9	No Connection	AJ9			10
NC_AK1	No Connection	AK1			10
NC_AK2	No Connection	AK2			10
NC_AK3	No Connection	AK3			10
NC_AK5	No Connection	AK5			10
NC_AK6	No Connection	AK6			10
NC_AK8	No Connection	AK8			10
NC_AL1	No Connection	AL1			10
NC_AL2	No Connection	AL2			10
NC_AL3	No Connection	AL3			10
NC_AL4	No Connection	AL4			10
NC_AL6	No Connection	AL6			10
NC_AL7	No Connection	AL7			10
NC_AL8	No Connection	AL8			10
NC_AL18	No Connection	AL18			10
NC_AM1	No Connection	AM1			10
NC_AM2	No Connection	AM2			10
NC_AM4	No Connection	AM4			10
NC_AM5	No Connection	AM5			10
NC_AM6	No Connection	AM6			10
NC_AM7	No Connection	AM7			10
NC_AN1	No Connection	AN1			10
NC_AN2	No Connection	AN2			10
NC_AN3	No Connection	AN3			10
NC_AN4	No Connection	AN4			10
NC_AN5	No Connection	AN5			10
NC_AN7	No Connection	AN7			10
NC_AP1	No Connection	AP1			10
NC_AP2	No Connection	AP2			10
NC_AP4	No Connection	AP4			10
NC_AP6	No Connection	AP6			10
NC_AP7	No Connection	AP7			10
NC_AR1	No Connection	AR1			10

Signal	Signal Description	Package pin number	Pin type	Power Supply	Notes
NC_AR2	No Connection	AR2			10
NC_AR3	No Connection	AR3			10
NC_AR4	No Connection	AR4			10
NC_AR5	No Connection	AR5			10
NC_AR6	No Connection	AR6			10
NC_AR7	No Connection	AR7			10
NC_AT1	No Connection	AT1			10
NC_AT2	No Connection	AT2			10
NC_AT3	No Connection	AT3			10
NC_AT5	No Connection	AT5			10
NC_AT7	No Connection	AT7			10
NC_AT8	No Connection	AT8			10
NC_AU1	No Connection	AU1			10
NC_AU2	No Connection	AU2			10
NC_AU4	No Connection	AU4			10
NC_AU5	No Connection	AU5			10
NC_AU6	No Connection	AU6			10
NC_AU7	No Connection	AU7			10
NC_AV1	No Connection	AV1			10
NC_AV2	No Connection	AV2			10
NC_AV3	No Connection	AV3			10
NC_AV5	No Connection	AV5			10
NC_AV7	No Connection	AV7			10
NC_AW3	No Connection	AW3			10
NC_AW4	No Connection	AW4			10
NC_AW5	No Connection	AW5			10
NC_AW6	No Connection	AW6			10
NC_AW7	No Connection	AW7			10
				t	

Notes:

- 1. Functionally, this pin is an output or an input, but structurally it is an I/O because it either sample configuration input during reset, is a muxed pin, or has other manufacturing test functions. This pin will therefore be described as an I/O for boundary scan.
- 2. This output is actively driven during reset rather than being tri-stated during reset.
- 3. MDIC is grounded through a 240 Ω precision 1% resistor. For either full or half driver strength calibration of DDR IOs, use the same MDIC resistor value of 240 Ω . The memory controller register setting can be used to determine automatic calibration is done to full or half drive strength. This pin is used for automatic calibration of the DDR4 IOs. The MDIC pin must be connected to 240 Ω precision 1% resistors.

Teledyne Confidential; Commercially Sensitive Business Data

- 4. This pin is a power-on-reset (POR) configuration pin. It has a weak internal pull-up resistor that is enabled during POR state only. The internal pull-up resistor allows the default value to be captured at POR de-assertion. This pull-up can be overpowered by an external pull-down resistor in case a change in the default value is required. Refer to the Design Checklist for details.
- 5. Recommend that a weak pull-up resistor be placed on this pin to the respective power supply. Refer to the Design Checklist for details.
- This pin is an open-drain signal.
- 7. This pin has a weak internal pull-up P-FET that is always enabled.
- 8. These are test signals for factory use only and must be pulled up (100 Ω to 1 k Ω) to the respective power supply for normal operation.
- 9. This pin requires a 200 Ω ± 1% pull-up resistor to respective power-supply.
- 10. Do not connect. These pins should be left floating.
- 11. This pin requires an external 1 kΩ pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.
- 12. These pins must be pulled to ground (GND).
- 13. This pin requires a 1.5 k Ω ± 1% pull-up resistor to respective power-supply.
- 14. These pins should be tied to ground if the diode is not utilized for temperature monitoring.
- 15. Attach 200 Ω ± 1% 100-ppm/C precision resistor-to-ground. Voltage range is between 0 to 250 mV.
- 16. Refer to the design checklist.
- 17. Pin must **NOT** be pulled down during power-on reset. This pin may be pulled up, driven high, or if there are any externally connected devices, left in tristate. If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 18. A 30.1 kΩ (±1%, ±100 ppm/°C) resistor is required between the USBn_VBUS and the 5 V supply.

Warning

See "Connection Recommendations" for additional details on properly connecting these pins for specific applications.

2.2.1 DDR1 pins

See the DDR1 pins.

2.2.2 **DDR2** pins

See the DDR2 pins.

2.2.3 I2C1 pins

See the I2C1 pins.

Teledyne Confidential; Commercially Sensitive Business Data

2.2.4 I2C2 pins

See the I2C2 pins.

2.2.5 I2C3 pins

See the I2C3 pins.

2.2.6 I2C4 pins

See the I2C4 pins.

2.2.7 I2C5 pins

See the I2C5 pins.

2.2.8 I2C6 pins

See the I2C6 pins.

2.2.9 I2C7 pins

See the I2C7 pins.

2.2.10 I2C8 pins

See the I2C8 pins.

2.2.11 XSPI1 pins

See the XSPI1 pins.

2.2.12 eSDHC1 pins

See the eSDHC1 pins.

2.2.13 **eSDHC2** pins

See the eSDHC2 pins.

2.2.14 UART pins

See the UART pins.

2.2.15 Interrupt controller pins

See the Interrupt Controller pins.

2.2.16 Trust pins

See the Trust pins.

2.2.17 System control pins

See the system control pins.

2.2.18 Clocking pins

See the Clocking pins.

Teledyne Confidential; Commercially Sensitive Business Data

2.2.19 Debug pins

See the Debug pins.

2.2.20 **DFT pins**

See the DFT pins.

2.2.21 JTAG pins

See the JTAG pins.

2.2.22 Analog pins

See the Analog pins.

2.2.23 SerDes1 pins

See the SerDes1 pins.

2.2.24 SerDes2 pins

See the SerDes2 pins.

2.2.25 SerDes3 pins

See the SerDes3 pins.

2.2.26 USB PHY pins

See the USB PHY pins.

2.2.27 EC1 pins

See the EC1 pins.

2.2.28 EC2 pins

See the EC2 pins.

2.2.29 GPIO pins

See the GPIO pins.

2.2.30 FlexTimer pins

See the FlexTimer pins.

2.2.31 CAN pins

See the CAN pins.

2.2.32 Power-on-reset configuration pins

See the POR configuration pins.

2.2.33 SPI1 pins

See the SPI1 pins.

Teledyne Confidential; Commercially Sensitive Business Data

2.2.34 SPI2 pins

See the SPI2 pins.

2.2.35 SPI3 pins

See the SPI3 pins.

2.2.36 IEEE 1588 pins

See the IEEE 1588 pins.

2.2.37 Power and ground pins

See the Power and Ground pins.

2.2.38 No connect pins

See the NC pins.

3 **ELECTRICAL CHARACTERISTICS**

This section describes the DC and AC electrical specifications for the chip. The chip is currently targeted to these specifications, some of which are independent of the I/O cell but are included for a more complete reference. These are not purely I/O buffer design specifications.

3.1 Overall DC electrical characteristics

This section describes the ratings, conditions, and other characteristics.

3.1.1 Absolute maximum ratings

This table provides the absolute maximum ratings

Table 3. Absolute maximum ratings ⁵

Characteristic	Symbol	Min	Max Value	Unit	Notes
Core and platform supply voltage	V _{DD}	-0.3	0.88	V	1
PLL supply voltage (core, platform, DDR)	AV _{DD} , AV _{DD} _D1, AV _{DD} _D2	-0.3	1.98	V	-
SerDes analog PLL fast and PLL slow supply voltage	AVDD_SD1_PLLF, AVDD_SD2_PLLF, AVDD_SD3_PLLF, AVDD_SD1_PLLS, AVDD_SD2_PLLS, AVDD_SD3_PLLS	-0.3	0.99	V	-
SerDes 1 and SerDes 2 core logic supply	SD_SV _{DD}	-0.3	0.99	V	-
SerDes 3 core logic supply	SD3_SV _{DD}	-0.3	0.99	V	-
SerDes 1 and SerDes 2 transceiver supply	SD_OVDD	-0.3	1.98	V	-
SerDes 3 transceiver supply	SD3_OVDD	-0.3	1.98	V	-

Teledyne Confidential; Commercially Sensitive Business Data

Characteristic	Symbol	Min	Max Value	Unit	Notes
SFP fuse programming	TA_PROG_SFP	-0.3	1.98	V	-
Thermal monitor unit supply	TH_V _{DD}	-0.3	1.98	V	-
General I/O supply	OV _{DD}	-0.3	1.98	V	-
eSDHC1 supply (also includes some GPIO1 and SPI1 pins)	EV _{DD}	-0.3	1.8 V + 90 mV	V	-
DDR4 DRAM I/O voltage	G1V _{DD} , G2V _{DD}	-0.3	1.32	V	-
USB PHY 3.3V high supply voltage	USB_HV _{DD}	-0.3	3.63	V	-
USB PHY analog and digital HS supply	USB_SDV _{DD}	-0.3	0.88	V	-
USB PHY analog and digital SS supply	USB_SVDD	-0.3	0.88	V	-
Low power security monitor supply	TA_BB_V _{DD}	-0.3	0.88	V	-
Input voltage for DDR4 DRAM signals	MVIN	-0.3	GV _{DD} + 0.3	V	2
Input voltage for general I/O signals and interfaces powered by OVDD	OVIN	-0.3	OV _{DD} + 0.3	V	3, 4
Input voltage for SerDes signals	SVIN	-0.4	SD_SV _{DD} + 0.3	V	4
Input voltage for USB PHY 3.3 HS signals	USB_HV _{IN}	-0.3	USB_HV _{DD} + 0.3	V	4
Input voltage for USB PHY SS signals	USB_SVIN	-0.3	USB_SV _{DD} + 0.3	V	4
Input voltage for USBn_ID	USB_ID _{IN}	-0.3	1.8	V	
Input voltage for USBn_VBUS	USB_VBUSIN	-0.3	3.3	V	
Input voltage for eSDHC1, GPIO1, and SPI1 signals powered by EVDD	EVIN	-0.3	EV _{DD} + 0.3	V	-
Storage temperature range	T _{STG}	-55	150	°C	6

Notes:

- Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin.
- Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during poweron reset and power-down sequences.
- 3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. $(M, O, S)V_{IN}$, and $USBn_HV_{IN}$ may overshoot/undershoot to a voltage and for a maximum duration as shown in the Overshoot/undershoot voltage figure at the end of this section.
- 5. Functional operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operations at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 6. Not to exceed 1008 hours cumulative at 150°C.

Teledyne Confidential; Commercially Sensitive Business Data

3.1.2 Recommended Operating Conditions

This table provides the recommended operating conditions for this chip.

Warning

The values shown are the recommended operating conditions and proper device operation outside these conditions is not guaranteed

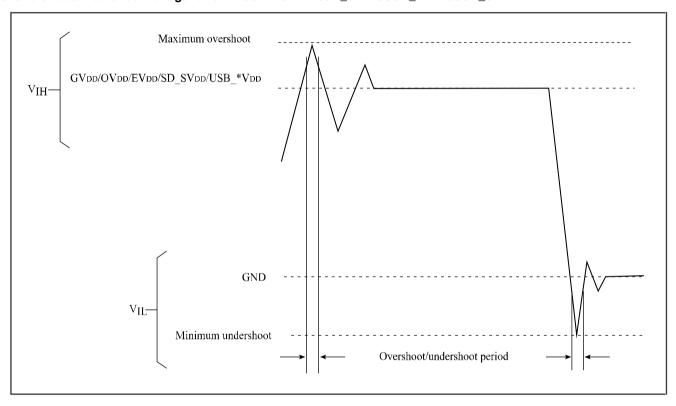
Table 4. Recommended operating conditions (6)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
VID core and platform supply voltage at boot	V _{DD}	0.850 - 30 mV	0.850	0.850 + 30 mV	V	1, 2, 3
VID core and platform supply voltage during normal operation	V _{DD}	VID - 30 mV	VID	VID + 30 mV	٧	1, 2, 3
PLL supply voltage (core, platform, DDR)	AV _{DD} , AV _{DD} _D1, AV _{DD} _D2	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	4
SerDes analog PLL fast and PLL slow supply voltage	AVDD_SD1_PLLF, AVDD_SD2_PLLF, AVDD_SD3_PLLF, AVDD_SD1_PLLS, AVDD_SD2_PLLS, AVDD_SD3_PLLS	0.9 V - 30 mV	0.9	0.9 V + 50 mV	V	-
SerDes 1 and SerDes 2 core logic supply	SD_SVDD	0.9 V - 30 mV	0.9	0.9 V + 50 mV	V	-
SerDes 3 core logic supply	SD3_SV _{DD}	0.9 V - 30 mV	0.9	0.9 V + 50 mV	V	-
SerDes 1 and SerDes 2 transceiver supply	SD_OVDD	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	-
SerDes 3 transceiver supply	SD3_OV _{DD}	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	-
SFP fuse programming	TA_PROG_SFP	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	5
Thermal monitor unit supply	TH_V _{DD}	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	-
General I/O supply	OVDD	1.8 V - 90 mV	1.8	1.8 V + 90 mV	V	-
eSDHC1 supply (also includes some GPIO1 and SPI1 pins)	EV _{DD}	1.8 V - 90 mV	1.8 V	1.8 V + 90 mV	V	-
DDR4 DRAM I/O voltage	G1V _{DD} , G2V _{DD}	1.2V - 60 mV	1.2	1.2 V + 60 mV	V	-
USB PHY 3.3V high supply voltage	USB_HVDD	3.3 - 165 mV	3.3	3.3 V + 165 mV	V	-
USB PHY analog and digital HS supply	USB_SDV _{DD}	0.8 V - 30 mV	0.8	0.8 V + 50 mV	V	-

Teledyne Confidential; Commercially Sensitive Business Data

Parameter	Symbol	Min	Тур	Max	Unit	Notes
USB PHY analog and digital SS supply	USB_SVDD	0.8 V - 30 mV	0.8	0.8 V + 50 mV	V	-
Low power supply monitor when connected to VDD supply	TA_BB_V _{DD}	VDD	VDD	VDD	V	-
Low power supply monitor when powered by battery	TA_BB_V _{DD}	0.8 V - 30 mV	0.8	0.8+50mV	V	-
Input voltage for DDR4 DRAM signals	MVIN		GND to GnV _{DD}		V	-
Input voltage for general I/O signals and interfaces powered by OV _{DD}	OVIN	-	GND to OV _{DD}	-	V	-
Input voltage for SerDes signals	SVIN	-	-400 mV to +400 mV	-	V	-
Input voltage for USB PHY 3.3 HS signals	USB_HVIN	-	GND to USB_HVDD	-	V	-
Input voltage for USB PHY SS signals	USB_SVIN	-	GND to USB_SVDD			
Input voltage for eSDHC1, GPIO1, and SPI1 signals powered by EVDD	EVIN	-	GND to EVDD	-	V	-
Range "A" operating temperature	T _A /T _J	T _A = -40	-	TJ = 105	°C	-
Range "F" operating temperature	T _A /T _J	T _A = -40	-	T _J = 125	°C	-
Range "M" operating temperature	T _A /T _J	T _A = -55	-	TJ = 125	°C	-
Secure boot fuse programming operating temperature range	T _A /T _J	T _A = 0	-	TJ = 70	°C	5

Notes:


- 1. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin.
- 2. Operation at 0.88V is allowable for up to 25 ms at initial power on.
- 3. Voltage ID (VID) operating range is between 0.775 V to 0.85 V. It is highly recommended to select a PMBus style regulator with a V_{OUT} range of at least 0.7 V to 0.9 V, with resolution of 12.5 mV or better.
- 4. AVDD, AVDD_D1, and AVDD_D2 are measured at the input to the filter and not at the pin of the device.
- 5. TA_PROG_SFP must be supplied 1.8V and the chip must operate in the specified fuse programming temperature range only during secure boot fuse programming. For all other operating conditions, PROG_SFP must be tied to GND, subject to the power sequencing constraints shown in Power Sequencing.
- 6. See Figure 9.
- 7. Only available on automotive grade parts.
- 8. The TJ must not exceed 105°C. Proper thermal solution should be applied to meet this requirement.

Teledyne Confidential; Commercially Sensitive Business Data

See the Recommended operating conditions table for actual recommended core voltage. Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in the Recommended operating conditions table. The input voltage threshold scales with respect to the associated I/O supply voltage. OVDD-based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses differential receivers referenced by the internally generated VREF signal. The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.

This figure shows the undershoot and overshoot voltages at the interfaces of the chip

Figure 9. Overshoot/undershoot voltage for GVDD/OVDD/EVDD/SD_SVDD/USB_HVDD/USB_SVDD

Note:

The overshoot/undershoot period should be less than 10% of shortest possible toggling period of the input signal or per input signal specific protocol requirement. For GPIO input signal overshoot/undershoot period, it should be less than 10% of the SYSCLK period

3.1.3 Output drive capabilities

This chip provides information on the characteristics of the output driver strengths.

Table 5. Output drive capability 1,2

Driver Type	Minimum 1	Тур	Maximum 2	Supply_Vol tage
General I/O signals	30	45	60	OVDD = 1.8V

Notes:

- 1. Minimum values reflect estimated numbers based on best-case processed device.
- Maximum values reflect estimated numbers based on worst-case processed device.

Teledyne Confidential; Commercially Sensitive Business Data

3.2 General AC timing

This table provides AC timing specifications for the sections not covered under the specific interface sections.

Table 6. General AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
Input signal rise and fall times	t _R /t _F	-	5	ns	1

Note

1. Rise time refers to signal transitions from 10% to 90% of Supply; fall time refers to transitions from 90% to 10% of supply.

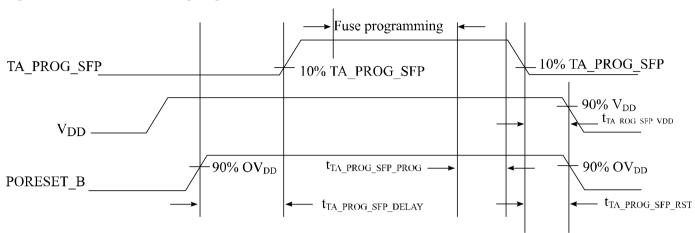
3.3 Power sequencing

For power up, the following sequence should be followed:

- During V_{DD} ramping, PORESET_B must be held low and TA_PROG_SFP must be grounded. All other power supplies (GnV_{DD}, OV_{DD}, EV_{DD}, USB_HV_{DD}, USB_SV_{DD}, USB_SDV_{DD}, SD_SV_{DD}, SD_OV_{DD}, TA_BB_V_{DD}, TH_V_{DD}, AV_{DD} (cores, platform, DDR), and AV_{DD}_SDm_PLLn) have no ordering requirement with respect to one another and with respect to V_{DD}. All supplies must be at their stable values within 400 ms.
- 2. Negate PORESET_B input as long as the required assertion/hold time has been met per the RESET initialization table.
- 3. For secure boot fuse programming, use the following steps:
 - a. After negation of PORESET_B, drive TA_PROG_SFP = 1.80 V after a required minimum delay per Table 7.
 - b. After fuse programming is completed, it is required to return TA_PROG_SFP = GND before the system is power cycled (PORESET_B assertion) or powered down (V_{DD} ramp down) per the required timing specified in Table 7. See Security fuse processor, for additional details.

NOTE

If using Trust Architecture Security Monitor battery backed features, prior to VDD ramping up to 0.5 V level, ensure that SD_SVDD is properly ramped and DIFF_SYSCLK_P / DIFF_SYSCLK_N is running. The clock should have a frequency of 100 MHz


Warning

No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND

Only 300,000 POR cycles are permitted per lifetime of a device. Note that this value is based on design estimates.

This figure provides the TA_PROG_SFP timing diagram.

Figure 10. TA_PROG_SFP timing diagram

NOTE: TA_PROG_SFP must be stable at 1.80 V prior to initiating fuse programming.

This table provides information on the power-down and power-up sequence parameters for TA_PROG_SFP.

Table 7. TA_PROG_SFP timing (5)

Drivertype	Min	Max	Unit	Notes
t _{TA_PROG_SFP_DELAY}	100	_	SYSCLKs	1
t _{TA_PROG_SFP_PROG}	0	_	Ms	2
t _{TA_PROG_SFP_VDD}	0	_	Ms	3
t _{TA_PROG_SFP_RST}	0	_	Ms	4

Notes

- Delay required from the de-assertion of PORESET_B to driving TA_PROG_SFP ramp up. Delay measured from PORESET_B
 deassertion at 90% OV_{DD} to 10% TA_PROG_SFP ramp up.
- Delay required from fuse programming finished to TA_PROG_SFP ramp down start. Fuse programming must complete while TA_PROG_SFP is stable at 1.80 V. No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND. After fuse programming is completed, it is required to return TA_PROG_SFP = GND.
- 3. Delay required from TA_PROG_SFP ramp down complete to V_{DD} ramp down start. TA_PROG_SFP must be grounded to minimum 10% TA_PROG_SFP before V_{DD} is at 90% V_{DD} .
- 4. Delay required from TA_PROG_SFP ramp down complete to PORESET_B assertion. TA_PROG_SFP must be grounded to minimum 10% TA_PROG_SFP before PORESET_B assertion reaches 90% OV_{DD}.
- 5. Only two secure boot fuse programming events are permitted per lifetime of a device.

Warning

TA PROG SFP ramp up slew rate must not exceed 18,000V/s. Ramp down does not have a slew rate constraint.

Teledyne Confidential; Commercially Sensitive Business Data

3.4 Power-down requirements

The power-down cycle must complete such that power supply values are below 0.3 V before a new power-up cycle can be started.

If performing secure boot fuse programming per Power sequencing, it is required that TA_PROG_SFP = GND before the system is power cycled (PORESET_B assertion) or powered down (V_{DD} ramp down) per the required timing specified in Table 7.

NOTE

All input signals, including I/Os that are configured as inputs, driven into the chip need to monotonically increase/ decrease through entire rise/fall durations.

3.5 Power-on ramp rate

This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum power-on ramp rate is required to avoid excess in-rush current.

This table provides the power supply ramp rate specifications.

Table 8. Power supply ramp rate

Parameter	Min	Max	Unit	Notes
Required ramp rate for all voltage supplies except those noted below	_	25	V/ms	1, 2
Required ramp rate for GnV _{DD} and AV _{DD} Dn supplies	_	5	V/ms	1, 2
Required ramp rate for TA_PROG_SFP supply	_	18	V/ms	1, 2

Notes:

- 1. Ramp rate is specified as a linear ramp from 10 to 90%. If non-linear (for example, exponential), the maximum rate of change from 200 to 500 mV is the most critical as this range might falsely trigger the ESD circuitry.
- 2. Over full recommended operating temperature range (see Recommended Operating Conditions).

3.6 Power characteristics

These tables show the thermal VDD power at 85°C and at 125°C.

Table 9. Thermal VDD power at 85°C

A72frequency (MHz)	Coherency domain frequency	Platform frequency	DDR data rate	1	Nominal Power(W	/)
	(MHz)	(MHz)	(MHz)	LX2160A	LX2120A	LX2080A
2.2 GHz	1500	750	3200	26.9	24.4	21.8
2.0 GHz	1400	700	2900	20.4	18.0	15.7
1.8 GHz	1300	650	2600	19.1	17.0	14.8

Note:

Table 10. LX2160A use case power

Power mode	Temperature (C)	Core (MHz)	Platform (MHz)	DDR (MT/s)	Coherency Domain (MHz)	DCE (MHz)	VDD power (W)	Comment
Max	125	2200	750	3200	1500	450	46	1,3
Thermal	125	2200	750	3200	1500	450	43	1,4
Max	105	2200	750	3200	1500	450	38	1,3
Thermal	105	2200	750	3200	1500	450	35	1,4
Typical	65	2200	750	3200	1500	450	17.9	2,4
Max	125	2000	700	2900	1400	450	36	1,3
Thermal	125	2000	700	2900	1400	450	33	1,4
Max	105	2000	700	2900	1400	450	28	1,3
Thermal	105	2000	700	2900	1400	450	25	1,4
Typical	65	2000	700	2900	1400	450	16.5	2,4
Max	125	1800	650	2600	1300	400	35	1,3
Thermal	125	1800	650	2600	1300	400	32	1,4
Max	105	1800	650	2600	1300	400	27	1,3
Thermal	105	1800	650	2600	1300	400	24	1,4
Typical	65	1800	650	2600	1300	400	15.2	2,4

Notes:

- 1. Worst-case processed device
- 2. Nominal processed device
- 3. 70% activity factor on cores, worst-case platform activity factor
- 4. 60% activity factor on cores, typical platform activity factor

Teledyne Confidential; Commercially Sensitive Business Data

Thermal power assumes Dhrystone running with activity factor of 60% (on all cores) and executing DMA on the platform. VDD
must run at VID voltage level.

This table shows the estimated power dissipation on the TA_BB_V_{DD} supply for the LX2160A at allowable voltage levels.

Table 11. TA_BB_VDD power dissipation

Supply	Maximum	Unit	Notes
TA_BB_V _{DD} (LX2xx0A off, 70°C)	36	uW	1
TA_BB_V _{DD} (LX2xx0A off, 40°C)	5	uW	1

Note:

1. When the device is off, TA_BB_VDD may be supplied by battery power to retain the Zeroizable Master Key and other trust architecture state. Board should implement a PMIC, which switches TA_BB_VDD to battery when SoC powered down. See the device reference manual trust architecture chapter for more information.

3.7 Input clocks

3.7.1 USB reference clock specifications

The reference clock of the USB PHY is the DIFF_SYSCLK_P/DIFF_SYSCLK_N. Refer to the Differential system clock (DIFF_SYSCLK_P/DIFF_SYSCLK_N) timing specifications for the USB AC timing specifications.

3.7.2 Gigabit Ethernet reference clock timing

This table provides the Ethernet gigabit reference clock DC electrical characteristics with OV_{DD} = 1.8 V.

Table 12. EC_GTX_CLK125 DC electrical characteristics (OV_{DD}=1.8 V)¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OVDD	_	_	V	2
Input low voltage	V _{IL}	_	_	0.3 x OV _{DD}	V	2
Input capacitance	C _{IN}	_	_	6	pF	_
Input current ($V_{IN} = 0 \text{ V or } V_{IN} = OV_{DD}$)	I _{IN}	_	_	± 50	μΑ	3

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min VIL and max VIH values are based on the respective min and max VIN values found in Recommended Operating Conditions.
- 3. The symbol VIN, in this case, represents the OV_{IN} symbol referenced in Recommended Operating Conditions.

This table provides the Ethernet gigabit reference clock AC timing specifications.

Table 13. EC_GTX_CLK125 AC timing specifications (1)

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	125 - 100 ppm	125	125 + 100 ppm	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}	_	8	_	ns	_
EC_GTX_CLK125 rise and fall time	t _{G125R} /t _{G125F}	_	_	0.75	ns	2
EC_GTX_CLK125 duty cycle 1000Base-T for RGMII	t _{G125H} /t _{G125}	40	_	60	%	3

Notes

- 1. At recommended operating conditions with OV_{DD} = 1.8 V ± 90mV. See Recommended Operating Conditions.
- 2. Rise and fall times for EC_GTX_CLK125 are measured from 0.36 and 1.44 V for OV_{DD} = 1.8 V
- 3. See RGMII AC timing specifications for duty cycle for the 10Base-T and 100Base-T reference clocks. The frequency of ECn_RX_CLK (input) should not exceed the frequency of EC_GTX_CLK125/ECn_TX_CLK (input) by more than 300 ppm.

Teledyne Confidential; Commercially Sensitive Business Data

3.7.3 DDR clock (DDRCLK)

This section provides the DDRCLK DC electrical characteristics and AC timing specifications.

3.7.3.1 DDRCLK DC electrical characteristics

This table provides the DDR clock (DDRCLK) DC electrical characteristics.

Table 14. DDRCLK DC electrical characteristics (3)

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	_	٧	1
Input low voltage	V _{IL}	_	_	0.3 x OV _{DD}	V	1
Input capacitance	C _{IN}	_	7	12	pF	_
Input current (VIN= 0V or VIN = OVDD)	I _{IN}	_	_	± 50	μΑ	2

Notes:

- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 2. The symbol OV_{IN}, in this case, represents the OV_{IN} symbol referenced in Recommended Operating Conditions.
- 3. At recommended operating conditions with OV_{DD} = 1.8 V. See Recommended Operating Conditions.

3.7.3.2 DDRCLK AC timing specifications

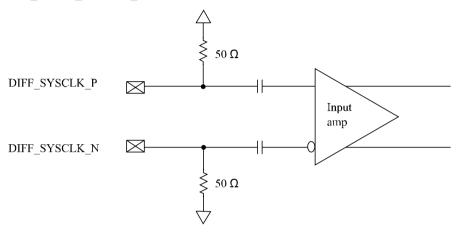
This table provides the DDR clock (DDRCLK) AC timing specifications.

Table 15. DDRCLK AC timing specifications5

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
DDRCLK frequency	f _{DDRCLK}		100		MHz	1, 2
DDRCLK frequency offset	F _{DDRCLK_OFFSET}	-300.0	_	300.0	ppm	
DDRCLK duty cycle	t _{KHK} /t _{DDRCLK}	42.5	50	57.5	%	2
DDRCLK slew rate	_	1.0	_	10	V/ns	3
DDRCLK peak period jitter	_	_	_	± 150	ps	4

Notes:

- Caution: The memory controller complex PLL multiplier/ratio (RCW[MEM_PLL_RAT]) must be chosen such that the resulting DDR data rate does not exceed its respective maximum or minimum operating frequencies.
- 2. Measured at the rising edge and/or the falling edge at OV_{DD}/2.
- 3. Slew rate as measured from 0.25 x OV_{DD} to 0.75 x OV_{DD}.
- 4. Peak period jitter is calculated according to the JEDEC standard expression 8.22 * RMS jitter.
- 5. At recommended operating conditions with OV_{DD} = 1.8V. See Recommended Operating Conditions.


3.7.4 Differential system clock (DIFF_SYSCLK_P/DIFF_SYSCLK_N) timing specifications

The differential system clocking mode requires an on-board oscillator to provide reference clock input to the differential system clock pair (DIFF_SYSCLK_P/DIFF_SYSCLK_N).

This differential clock pair can be configured to provide the clock to core, platform, and USB PLLs.

This figure shows a receiver reference diagram of the differential system clock.

Figure 11. DIFF_SYSCLK_P/DIFF_SYSCLK_N receiver

This section provides the differential system clock DC and AC timing specifications.

3.7.4.1 Differential system clock DC electrical characteristics

For DC electrical characteristics, see DC-level requirement for SerDes reference clocks.

The differential system clock receiver's power supply voltage requirements (SD3_SV_{DD)} are specified in Recommended Operating Conditions.

3.7.4.2 Differential system clock AC timing specifications

This table provides the differential system clock AC timing specificiatons.

For additional AC timing specifications, see SerDes reference clocks AC timing specifications.

Table 16. Differential System Clock AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Reference clock frequency	f _{SYSCLK}	-	100	-	MHz	-
Reference clock frequency- offset	F _{REF_OFFSET}	-300.0	-	300.0	ppm	-
Reference clock random jitter (RMS)	JRMS _{REF_CLK}	-	-	2.6	ps	1, 2
Reference clock cycle-to- cycle jitter	DJ _{REF_CLK}	-	-	150.0	ps	3
Reference clock duty cycle	t _{KHK} /t _{SYSCLK}	40	-	60	%	-

Notes:

- 1. 1.5 MHz to Nyquist frequency. For example, for 100 MHz reference clock, the Nyquist frequency is 50 MHz.
- The peak-to-peak Rj specification is calculated at 14.069 times the RJ_{RMS} for 10⁻¹² BER.
- 3. DJ across all frequencies.

Teledyne Confidential; Commercially Sensitive Business Data

3.7.5 Other input clocks

A description of the overall clocking of this device is available in the chip reference manual in the form of a clock subsystem block diagram. For information about the input clock requirements of functional modules sourced external of the chip, see the specific interface section.

3.8 Reset initialization timing specifications

This table provides the RESET initialization timing specifications.

Table 17. RESET initialization timing specifications

Parameter	Min	Max	Unit	Notes
Required assertion time of PORESET_B after SYSCLK/DIFF_SYSCLK and all power rails are stable	1.0	-	ms	1
Required input assertion time of HRESET_B	32.0	-	SYSCLKs	2, 3
Maximum rise/fall time of HRESET_B	-	10.0	SYSCLK	4
Maximum rise/fall time of PORESET_B	-	1	SYSCLK	4
Input setup time for POR configs with respect to negation of PORESET_B	4.0	-	SYSCLKs	2
Input hold time for all POR configs with respect to negation of PORESET_B	2.0	-	SYSCLKs	2
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of PORESET_B	-	5.0	SYSCLKs	2

Notes:

- 1. PORESET_B must be driven asserted before the core and platform power supplies are powered up.
- 2. The DIFF_SYSCLK is the primary clock input for the chip.
- 3. The device asserts HRESET_B as an output when PORESET_B is asserted to initiate the power-on reset process. The device releases HRESET_B sometime after PORESET_B is deasserted. The exact sequence of HRESET_B deassertion is documented in the reference manual's "Power-on Reset Sequence" section.
- 4. The system/board must be designed to ensure the input requirement to the device is achieved. Proper device operation is guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.

3.9 Battery-backed security monitor and tamper detect

This section describes the DC and AC electrical characteristics for the battery-backed security monitor interface, which includes the TA_BB_TMP_DETECT_B pin. It also describes the DC electrical characteristics for the TA_TMP_DETECT_B pin.

3.9.1 Battery-backed security monitor and tamper detect DC electrical characteristics

This table provides the DC electrical characteristics for the battery-backed security monitor interface (TA_BB_TMP_DETECT_B) operating at TA_BB_VDD.

Table 18. Battery-backed security monitor interface DC electrical characteristics (TA_BB_V DD = VID)1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Input high voltage	V _{IH}	0.75 x TA_BB_VDD			V	2, 4
Input low voltage	V _{IL}		-	0.30 x TA_BB_VDD	V	2
Input current ($V_{IN} = 0V$ or $V_{IN} = TA_BB_V_{DD}$)	I _{IN}	-	-	50.0	μΑ	3

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max TA_BB_V_{IN} values found in Recommended Operating Conditions.
- The symbol TA_BB_V_{DD} represents the recommended operating voltage of the supply referenced in Recommended Operating Conditions.
- 4. If the signal falls below V_{IH}, it can cause a false trigger.

This table provides the DC electrical characteristics for the tamper detect security monitor (TA_TMP_DETECT_B) operating at OV_{DD}.

Table 19. Tamper detect monitor interface DC electrical characteristics (OV_{DD} = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OVDD			V	2, 4
Input low voltage	V _{IL}		-	0.3 x OVDD	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{IN})	I _{IN}	-	-	50.0	μΑ	3

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- The symbol OV_{IN} represents the recommended operating voltage of the supply referenced in Recommended Operating Conditions.
- 4. If the signal falls below VIH, it can cause a false trigger.

Teledyne Confidential; Commercially Sensitive Business Data

3.9.2 Battery-backed security monitor AC timing specifications

This table provides the AC timing specifications for the battery-backed security monitor interface.

Table 20. Battery-backed security monitor interface AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
TA_BB_TMP_DETECT_B	t _{TMP}	100.0	-	ns	1

Note:

1. TA_BB_TMP_DETECT_B is asynchronous to any clock.

3.10 DDR4 SDRAM controller

This section describes the DC and AC electrical specifications for the DDR4 SDRAM controller interface. Note that the required GV_{DD} (typ) voltage is 1.2 V when interfacing to DDR4 SDRAM.

Note: When operating at a DDR data rate of 2600 MT/s or higher, only one dual-ranked module per memory controller is supported.

3.10.1 DDR4 SDRAM controller DC electrical characteristics

This table provides the recommended opearting conditions for the DDR SDRAM controller when interfacing to DDR4 SDRAM.

Table 21. DDR4 SDRAM interface DC electrical characteristics (GV DD = 1.2V)^{1, 6, 7}

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	VREF + 0.085	_	V	2, 3
Input low voltage	V _{IL}		VREF - 0.085	V	2, 3
I/O leakage current	I _{IN} /I _{OZ}	-50	50	μA	4, 5

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Input capacitance load for DQ, DQS, and DQS_B are available in the IBIS models.
- 3. Internal VREF is trained.
- 4. Refer to IBIS model for the complete output IV curve characteristics.
- Output leakage is measured with all outputs diabled, 0 V ≤ V_{OUT} ≤ GV_{DD}. Applies to each pin.
- GV_{DD} is expected to be within 60 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source. GV_{DD} min = 1.14 V, GV_{DD} max = 1.26 V, and GV_{DD} typ = 1.2 V.
- 7. VTT and VREFCA are applied directly to the DRAM device. Both VTT and VREFCA voltages must track GV_{DD}/2

3.10.2 DDR4 SDRAM controller AC timing specifications

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR4 SDRAM.

Table 22. DDR4 SDRAM interface input AC timing specifications

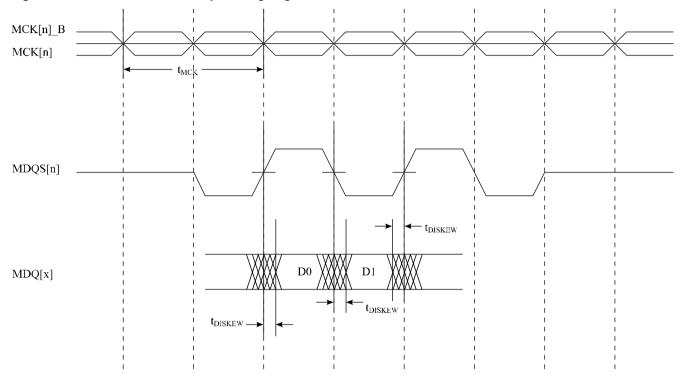
Parameter	Symbol	Min	Max	Unit	Notes
AC input low voltage	V _{ILAC}	-	VREF - 0.085	V	Internal VREF is trained.
AC input high voltage	V _{IHAC}	VREF + 0.085	-	V	Internal VREF is trained.

Teledyne Confidential; Commercially Sensitive Business Data

LX2160A

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR4 SDRAM.

Table 23. DDR4 SDRAM interface input AC timing specifications 3


Parameter	Symbol	Min	Max	Unit	Notes
Controller Skew for MDQS-MDQ/MECC	t _{CISKEW}	-	-	ps	-
Data Rate of 1300 MT/s in DDR4		-125.0	125.0		1
Data Rate of 1600 MT/s in DDR4		-112.0	112.0		1
Data Rate of 1800 MT/s in DDR4		-93.0	93.0		1
Data Rate of 2100 MT/s in DDR4		-82.0	82.0		1
Data Rate of 2400 MT/s in DDR4		-78.0	78.0		1
Data Rate of 2600 MT/s in DDR4		-74.0	74.0		1
Data Rate of 2900 MT/s in DDR4		-69.0	69.0		1
Data Rate of 3200 MT/s in DDR4		-65.0	65.0		1
Tolerated Skew for MDQS-MDQ/MECC	t _{DISKEW}	-	-	ps	-
Data Rate of 1300 MT/s in DDR4		-250.0	250.0		2
Data Rate of 1600 MT/s in DDR4		-200.0	200.0		2
Data Rate of 1800 MT/s in DDR4		-175.0	175.0		2
Data Rate of 2100 MT/s in DDR4		-152.0	152.0		2
Data Rate of 2400 MT/s in DDR4		-130.0	130.0		2
Data Rate of 2600 MT/s in DDR4		-114.0	114.0		2
Data Rate of 2900 MT/s in DDR4		-102.0	102.0		2
Data Rate of 3200 MT/s in DDR4		-92.0	92.0		2, 3

Notes:

- t CISKEW represents the amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.
- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t DISKEW. This can be
 determined by the following equation: t DISKEW = +/-(T / 4 abs(t CISKEW)), where T is the clock period and abs(t CISKEW) is the
 absolute value of t CISKEW.
- 3. See Figure 12

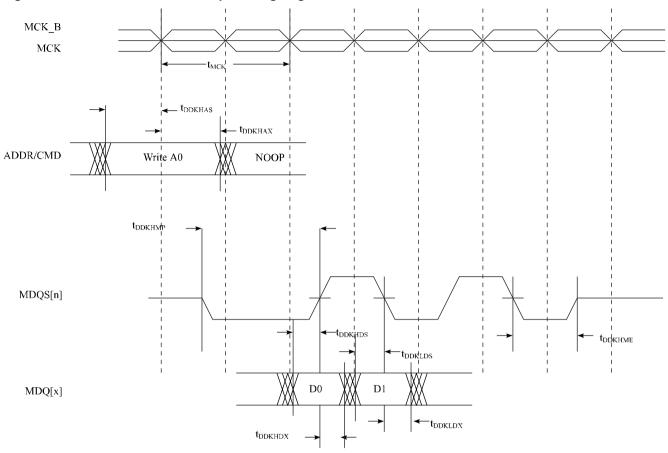
Teledyne Confidential; Commercially Sensitive Business Data

Figure 12. DDR4 SDRAM interface input timing diagram

This table contains the output AC timing targets for the DDR4 SDRAM interface

Table 24. DDR4 SDRAM interface output AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
MCK[n] cycle time	tMCK	625.0	1500.0	ps	1
ADDR/CMD/CNTL output setup with respect to MCK	^t DDKHAS	-	-	ps	-
Data Rate of 1300 MT/s in DDR4		606.0	-		3, 4
Data Rate of 1600 MT/s in DDR4		495.0	-		3, 4
Data Rate of 1800 MT/s in DDR4		410.0	-		3, 4
Data Rate of 2100 MT/s in DDR4		350.0	-		3, 4
Data Rate of 2400 MT/s in DDR4		321.0	-		3, 4
Data Rate of 2600 MT/s in DDR4		289.0	-		3, 4
Data Rate of 2900 MT/s in DDR4		263.0	-		3, 4
Data Rate of 3200 MT/s in DDR4		210.0	-		3, 4
ADDR/CMD/CNTL output hold with respect to MCK	^t DDKHAX	-	-	ps	-
Data Rate of 1300 MT/s in DDR4		606.0	-		3, 4
Data Rate of 1600 MT/s in DDR4		495.0	-		3, 4
Data Rate of 1800 MT/s in DDR4		390.0	-		3, 4
Data Rate of 2100 MT/s in DDR4		350.0	-		3, 4
Data Rate of 2400 MT/s in DDR4		321.0	-	-	3, 4
Data Rate of 2600 MT/s in DDR4		289.0	-		3, 4
Data Rate of 2900 MT/s in DDR4		263.0	-		3, 4
Data Rate of 3200 MT/s in DDR4		210.0	-		3, 4
MDQ/MECC/MDM output data eye	t _{DDKXDEYE}	-	-	ps	-
Data Rate of 1300 MT/s in DDR4		500.0	-		4, 5
Data Rate of 1600 MT/s in DDR4		400.0	-	-	4, 5
Data Rate of 1800 MT/s in DDR4		350.0	-		4, 5
Data Rate of 2100 MT/s in DDR4		320.0	-		4, 5


Teledyne Confidential; Commercially Sensitive Business Data

Parameter	Symbol	Min	Max	Unit	Notes
Data Rate of 2400 MT/s in DDR4		280.0	-		4, 5
Data Rate of 2600 MT/s in DDR4		250.0	-		4, 5
Data Rate of 2900 MT/s in DDR4		225.0	-		4, 5
Data Rate of 3200 MT/s in DDR4		205.0	-		4, 5
MDQS preamble	t _{DDKHMP}	0.9 * t _{MCK}	-	ps	4
MDQS postamble	t _{DDKHME}	0.4 * t _{MCK}	0.6 * t _{MCK}	ps	4

Notes

- 1. All MCK/MCK_B and MDQS/MDQS_B referenced measurements are made from the crossing of the two signals.
- See Figure 12.
- ADDR/CMD/CNTL includes all DDR SDRAM output signals except MCK/MCK_B, and MDQ/MECC/MDM/MDQS/MDQS_B.
- 4. The symbols used for timing specifications follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time.
- Available eye for data (MDQ), ECC (MECC), and data mask (MDM) outputs at the pin of the processor. Memory controller will center the strobe (MDQS) in the available data eye at the DRAM (end point) during the initialization.
- 6. See Figure 13.

Figure 13. DDR4 SDRAM interface output timing diagram

3.11 Universal asynchronous receiver/transmitter (UART)

3.11.1 UART DC electrical characteristics

This table provides the DC electrical characteristics for the UART interface.

Table 25. UART DC electrical characteristics (OV DD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	-	±50	μΑ	3
Output high voltage (I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (I _{OL} = 0.5 mA)	V _{OL}	-	0.45	V	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions. Teledyne Confidential; Commercially Sensitive Business Data

3.11.2 UART AC timing specifications

This table provides the AC timing specifications for the UART interface.

Table 26. UART AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
Baud rate	baud	300.0	921600.0	bits/se c	1, 2

Notes:

- 1. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.
- 2. The actual attainable baud rate is limited by the latency of interrupt processing.

3.12 Enhanced secure digital host controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface.

3.12.1 eSDHC DC electrical characteristics

This table provides the DC electrical characteristics for the eSDHC interface.

Table 27. eSDHC DC electrical characteristics (EVDD/OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x EV _{DD} /OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x EV _{DD} /OV _{DD}	V	2
Input/output leakage current	I _{IN} /I _{OZ}	-	-250/+50	μΑ	-
Output high voltage (I _{OH} = -2mA at EV _{DD} /OV _{DD} min)	V _{OH}	EV _{DD} /OV _{DD} - 0.45	-	V	-
Output low voltage (I _{OL} = 2mA at EV _{DD} /OV _{DD} min)	V _{OL}	-	0.45	V	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max EV_{IN}/OV_{IN} values found in Recommended Operating Conditions.

3.12.2 eSDHC AC timing specifications

This table provides the eSDHC AC timing specifications as defined in the eSDHC clock input timing diagram.

Table 28. eSDHC AC timing specifications (full-speed mode) 1, 3, 5

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK frequency SD/SDIO	f _{SHSCK}	0.0	25.0	MHz	1, 2, 3
SDHC_CLK frequency eMMC	f _{SHSCK}	0.0	26.0	MHz	1, 2, 3
SDHC_CLK clock low time	t _{SHSCKL}	10.0	-	ns	3
SDHC_CLK clock high time	t _{SHSCKH}	10.0	-	ns	3
SDHC_CLK clock rise and fall times	t _{SHSCKR} /t _{SHSCKF}	-	3.0	ns	3
Input setup times (SDHC_CMD, SDHC_DATx to SDHC_CLK)	t _{shsivkh}	2.5	-	ns	3, 4
Input hold times (SDHC_CMD, SDHC_DATx to SDHC_CLK)	t _{SHSIXKH}	2.5	-	ns	3
Output hold time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	t _{SHSKHOX}	-3.0	-	ns	3
Output delay time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	^t shskhov	-	3.0	ns	3

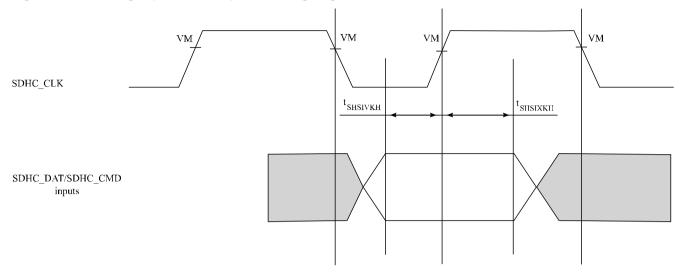
Notes:

- 1. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. In full-speed mode, the clock frequency value can be 0-25MHz for an SD/SDIO card and 0-26MHz for an MMC card.
- 3. $C CARD \le 10 pF$, (1 card), and $C L = C BUS + C HOST + C CARD \le 40 pF$.
- 4. SDHC_SYNC_OUT/IN loop back is recommended to compensate the clock delay. In case the SDHC_SYNC_OUT/IN loopback is not used, to satisfy setup timing, one-way board-routing delay between host and card, on SDHC_CLK, SDHC_CMD, and SDHC_DATx should not exceed 1ns for any high-speed MMC card. For any high-speed or default speed mode SD card, the one-way board-routing delay between host and card, on SDHC_CLK, SDHC_CMD, and SDHC_DATx should not exceed 1.5ns.
- 5. See Figure 19.

Teledyne Confidential; Commercially Sensitive Business Data

This table provides the eSDHC AC timing specifications as defined in the eSDHC clock input timing diagram.

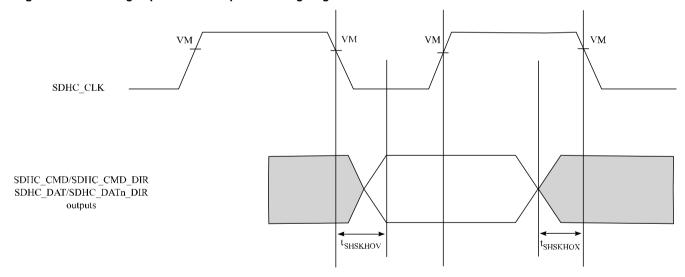
Table 29. eSDHC AC timing specifications (high-speed mode) 1,3,5,6,7


Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK frequency SD/SDIO	f _{SHSCK}	0.0	50.0	MHz	1, 2, 3
SDHC_CLK frequency eMMC	f _{SHSCK}	0.0	52.0	MHz	1, 2, 3
SDHC_CLK clock low time	t _{SHSCKL}	7.0	-	ns	3
SDHC_CLK clock high time	t _{SHSCKH}	7.0	-	ns	3
SDHC_CLK clock rise and fall times	t _{SHSCKR} /t _{SHSCKF}	-	3.0	ns	3
Input setup times (SDHC_CMD, SDHC_DATx to SDHC_CLK)	tshsivkh	2.5	-	ns	3, 4
Input hold times (SDHC_CMD, SDHC_DATx to SDHC_CLK)	t _{SHSIXKH}	2.5	-	ns	3
Output hold time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	t _{SHSKHOX}	-3.0	-	ns	3
Output delay time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	^t shskhov	-	3.0	ns	3

Notes:

- 1. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. In high-speed mode, the clock frequency value can be 0-50MHz for an SD/SDIO card and 0-52MHz for an MMC card.
- 3. C CARD \leq 10 pF, (1 card), and C L = C BUS + C HOST + C CARD \leq 40 pF.
- 4. SDHC_SYNC_OUT/IN loop back is recommended to compensate the clock delay. In case the SDHC_SYNC_OUT/IN loopback is not used, to satisfy setup timing, one-way board-routing delay between host and card, on SDHC_CLK, SDHC_CMD, and SDHC_DATx should not exceed 1 ns for any high-speed MMC card. For any high-speed or default speed mode SD card, the one-way board-routing delay between host and card, on SDHC_CLK, SDHC_CMD, and SDHC_DATx should not exceed 1.5ns.
- 5. See Figure 19.
- 6. See Figure 14.
- 7. See Figure 15

This figure provides the input AC timing diagram for high-speed mode.


Figure 14. eSDHC high-speed mode input AC timing diagram

VM = Midpoint Voltage (Respective supply / 2)

This figure provides the output AC timing diagram for high-speed mode.

Figure 15. eSDHC high-speed mode output AC timing diagram

VM = Midpoint Voltage (Respective supply / 2)

Teledyne Confidential; Commercially Sensitive Business Data

This table provides the eSDHC AC timing specifications for SDR50 mode on devices with a voltage translator.

Table 30. eSDHC AC timing specifications (SDR50 mode with voltage translator) 2, 3, 4

Parameter	Symbol	Min	Мах	Unit	Notes
SDHC_CLK clock frequency	f _{SHSCK}	0.0	100.0	MHz	-
SDHC_CLK rise and fall times	t _{SHSCKR} /t _{SHSCKF}	-	2.0	ns	1
SDHC_CLK duty cycle	t _{SHSCK}	47.0	53.0	%	-
Input setup times (SDHC_CMD, SDHC_DATxto SDHC_CLK_SYNC_IN)	t _{SHSIVKH}	1.9	-	ns	1, 5, 6
Input hold times (SDHC_CMD, SDHC_DATxto SDHC_CLK_SYNC_IN)	tshsixkh	0.7	-	ns	1, 5, 6
Output hold time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	t _{SHSKHOX}	1.6	-	ns	1, 5, 6
Output delay time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	tshskhov	-	5.7	ns	1, 5, 6

Notes:

- 1. $C_{CARD} \le 10 \text{ pF}$, (1 card), and $CL = C_{BUS} + C_{HOST} + C_{CARD} \le 30 \text{ pF}$.
- 2. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state) (signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. See Figure 20.
- 4. See Figure 21.
- 5. Voltage translator with board skew: -0.8 ns to 0.8 ns
- 6. The voltage translator parameters are based on:
 - . Channel-to-channel skew is min -0.5 ns, max +0.5 ns
 - . CLK Feedback to DAT/CMD delay is min -0.5 ns, max +0.5 ns

LX2160A

This table provides the SDHC1 and SDHC2 AC timing specifications for DDR50 and DDR (3.3V) mode with voltage translator.

Table 31. SDHC1 and SDHC2 AC timing specifications (DDR50 and DDR (3.3V) mode with voltage translator) 3,4,5,6

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK duty cycle	tshsck	47.0	53.0	%	-
SDHC_CLK frequency	f _{SHCK}	-	-	MHz	-
SD/SDIO DDR50 mode		-	50.0		1
eMMC DDR mode		-	50.0		2
SDHC_CLK rise and fall times	t _{SHCKR} /t _{SHCKF}	-	-	ns	-
SD/SDIO DDR50 mode		-	4.0		1
eMMC DDR mode		-	2.0		2
Input setup times (SDHC_DATx to SDHC_CLK_SYNC_IN)	t _{SHDIVKH}	-	-	ns	-
SD/SDIO DDR50 mode		1.6	-		1, 7, 9
eMMC DDR mode		1.6	-		2, 7, 9
Input hold times (SDHC_DATx to SDHC_CLK_SYNC_IN)	t _{SHDIXKH}	0.7	-	ns	1, 7, 9
Output hold time (SDHC_CLK to SDHC_DATx valid)	t _{SHDKHOX}	-	-	ns	-
SD/SDIO DDR50 mode		2.2	-		1, 7, 9
eMMC DDR mode		3.9	-		2, 7, 9
Output delay time (SDHC_CLK to SDHC_DATx valid)	t _{SHDKHOV}	-	-	ns	-
SD/SDIO DDR50 mode		-	5.6		1, 7, 9
eMMC DDR mode		-	6.1		2, 7, 9
Input setup time (SDHC_CMD to SDHC_CLK_SYNC_IN)	t _{SHCIVKH}	-	-	ns	-
SD/SDIO DDR50 mode		4.8	-		1, 8, 9
eMMC DDR mode		4.5	-		2, 8, 9

Teledyne Confidential; Commercially Sensitive Business Data

Parameter	Symbol	Min	Max	Unit	Notes
Input hold time (SDHC_CMD to SDHC_CLK_SYNC_IN)	t _{SHCIXKH}	0.7	-	ns	1, 7, 9
Output hold time (SDHC_CLK to SDHC_CMD valid)	t _{sнскнох}	-	-	ns	-
SD/SDIO DDR50 mode		2.2	-		1, 7, 9
eMMC DDR mode		4.4	-		2, 7, 9
Output delay time (SDHC_CLK to SDHC_CMD valid)	t _{SHCKHOV}	-	-	ns	-
SD/SDIO DDR50 mode		-	12.6		1, 7, 9
eMMC DDR mode		-	15.3		2, 7, 9

Notes:

- 1. $C_{CARD} \le 10pF$, (1 card).
- 2. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 20 \text{ pF for MMC}, \le 25 \text{pF for Input Data of DDR50}, \le 30 \text{pF for Input CMD of DDR50}.$
- 3. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 4. See Figure 22.
- 5. See Figure 23.
- 6. Assumes no skew between CLK to and CLK_SYNC_OUT
- 7. Voltage translator with board skew: -0.8 ns to 0.8 ns.
- 8. Voltage translator with board skew: -0.8 ns to 0.9 ns.
- 9. The voltage translator parameters are based on:
 - Channel-to-channel skew is min -0.5 ns, max +0.5 ns.
 - CLK_Feedback to DAT/CMD delay is min -0.5 ns, max +0.5 ns.

LX2160A

This table provides the SDHC1 and SDHC2 AC timing specifications for the DDR (1.8V) mode without voltage translator.

Table 32. SDHC1 and SDHC2 AC timing specifications (DDR (1.8V) mode without voltage translator) 1, 2, 3, 4

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK duty cycle	t _{SHSCK}	47.0	53.0	%	-
SDHC_CLK frequency	f _{SHCK}		50.0	MHz	
SDHC_CLK rise and fall times	t _{SHCKR} /t _{SHCKF}		2.0	ns	
Skew between SDHC_CLK_SYNC_OUT and SDHC_CLK	t _{SHSKEW}				
SDHC1		-0.6	0.1	ns	
SDHC2		-0.2	0.2	ns	
Input setup times (SDHC_DATx to SDHC_CLK_SYNC_IN)	t _{SHDIVKH}	1.6		ns	5
Input hold times (SDHC_DATx to SDHC_CLK_SYNC_IN)	t _{SHDIXKH}	0.7 ns		ns	5
Output hold time (SDHC_CLK to SDHC_DATx valid)	t _{SHDKHOX}	3.4		ns	5
Output delay time (SDHC_CLK to SDHC_DATx valid)	t _{SHDKHOV}		6.1	ns	5
Input setup time (SDHC_CMD to SDHC_CLK_SYNC_IN)	t _{SHCIVKH}	4.5		ns	5
Input hold time (SDHC_CMD to SDHC_CLK_SYNC_IN)	t _{SHCIXKH}	0.7		ns	5
Output hold time (SDHC_CLK to SDHC_CMD valid)	t _{SHCKHOX}	тыскнох 3.9		ns	5
Output delay time (SDHC_CLK to SDHC_CMD valid)	t _{SHCKHOV}		15.3	ns	5

Notes:

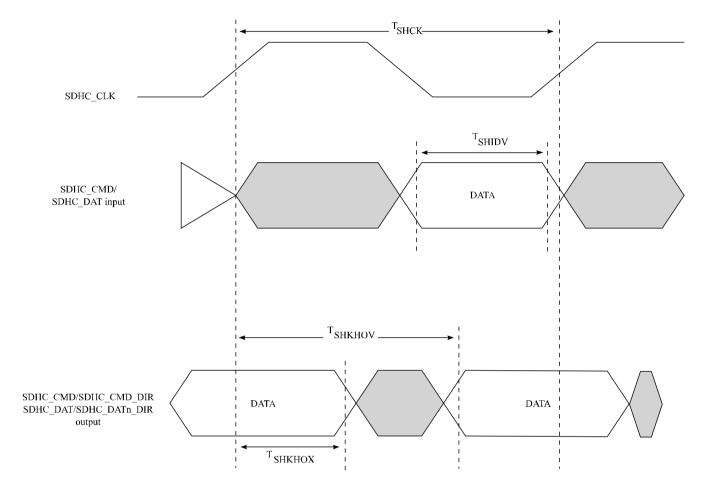
- C_L = C_{BUS} + C_{HOST} + C_{CARD} ≤ 20 pF for MMC, ≤ 25pF for Input Data of DDR50, ≤ 30pF for Input CMD of DDR50.
- 2. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. See Figure 22.
- 4. See Figure 23.
- 5. Board skew: -0.2 to 0.2 ns

Teledyne Confidential; Commercially Sensitive Business Data

This table provides the eSDHC AC timing specifications for SDR104/eMMC HS200 mode.

Table 33. eSDHC ACtiming specifications (SDR104/HS200 mode) 2,3

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK duty cycle	t _{SHSCK}	47.0	53.0	%	-
SDHC_CLK frequency	f _{SHCK}	-	-	MHz	-
SD/SDIO SDR104 mode		-	208.0		-
eMMC HS200 mode		-	200.0		-
SDHC_CLK rise and fall times	t _{SHCKR} /t _{SHCKF}	-	1.0	ns	1
Output hold time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	Т _{ЅНКНОХ}	-	-	ns	-
SD/SDIO SDR104 mode		1.58	-		1
eMMC HS200 mode		1.6	-		1
Output delay time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	Т _{SHKHOV}	-	-	ns	-
SD/SDIO SDR104 mode		-	2.9		1
eMMC HS200 mode		-	2.95		1
Input data window (UI)	t _{SHIDV}	-	-	Unit interval	-
SD/SDIO SDR104 mode		0.5	-		1
eMMC HS200 mode		0.475	-		1


Notes

- 1. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 15pF$.
- 2. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. See Figure 16.

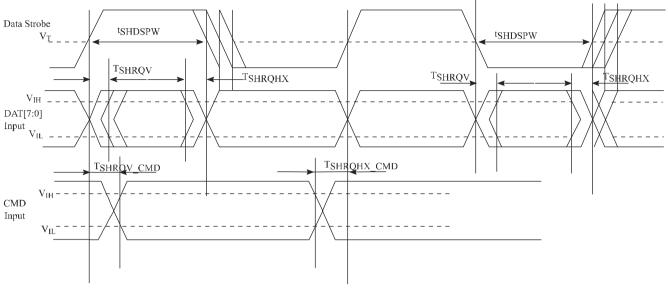
Teledyne Confidential; Commercially Sensitive Business Data

This figure provides the eSDHC SDR104/HS200 mode timing diagram.

Figure 16. eSDHC SDR104/HS200 mode timing diagram

This table provides the eSDHC AC timing specifications for eMMC HS400 mode.

Table 34. eSDHC AC timing specifications (HS400 mode) $^{2, 3, 4, 5}$


Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK frequency	f _{SHCK}	-	200.0	MHz	-
Output hold time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	T _{SHKHOX}	0.75	-	ns	1
Output delay time (SDHC_CLK to SDHC_CMD, SDHC_DATx valid)	T _{SHKHOV}	-	1.75	ns	1
Data valid skew to DQS	T _{SHRQV}	-	0.45	ns	1
Data hold skew to DQS	T _{SHRQHX}	-	0.45	ns	1
Command valid skew to DQS	Tshrqv_cmd	-	0.45	ns	1
Command hold skew to DQS	TSHRQHX_CM D	-	0.45	ns	1
DQS pulse width	T _{SHDSPWS}	1.97	-	ns	1
Duty cycle distortion	t _{SHSCK_DIS}	0.0	0.3	ns	1

Notes:

- 1. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 15pF$.
- 2. The symbols used for timing specifications herein follow the pattern of t (first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t SHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. For HS400 without enhanced strobe (DQS) command, see Figure 16.
- 4. See Figure 17.
- 5. See Figure 18.

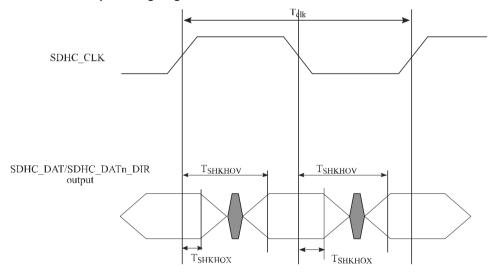
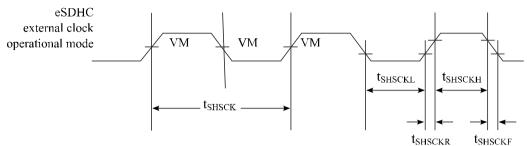

This figure provides the eSDHC HS400 mode input timing diagram.

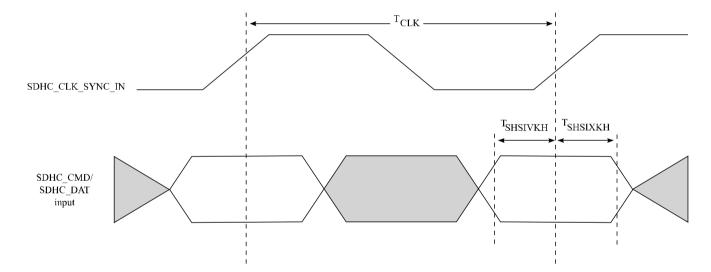
Figure 17. eSDHC HS400 mode input timing diagram

This figure provides the eSDHC HS400 mode output timing diagram.


Figure 18. eSDHC HS400 mode output timing diagram

Teledyne Confidential; Commercially Sensitive Business Data

This figure provides the eSDHC clock input timing diagram.


Figure 19. eSDHC clock input timing diagram

VM = Midpoint voltage (Respective supply / 2)

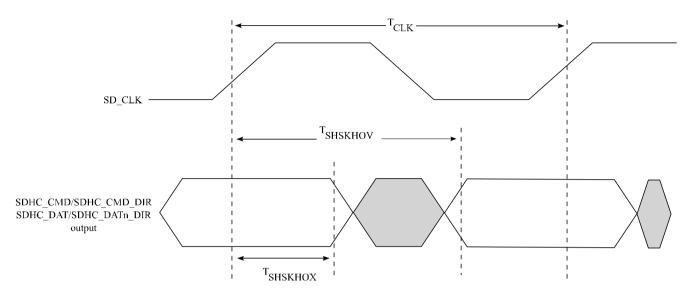

This figure provides the eSDHC input AC timing diagram for SDR50 mode.

Figure 20. eSDHC SDR50 mode input AC timing diagram

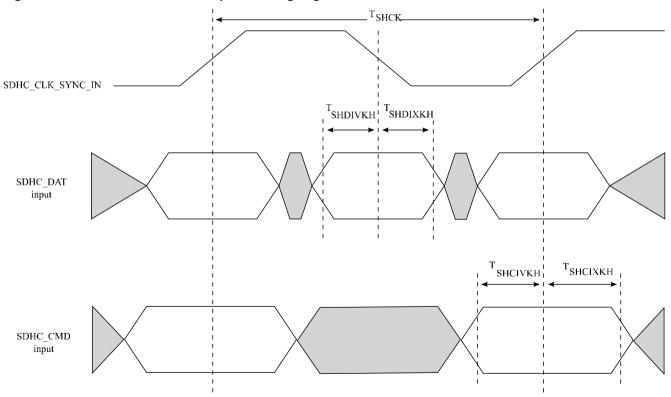
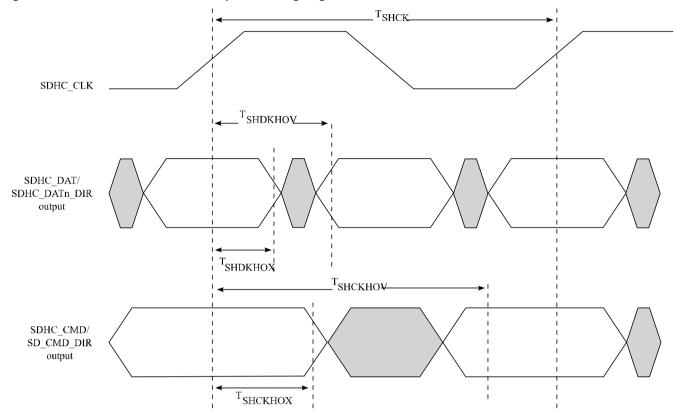

This figure provides the eSDHC output timing diagram for SDR50 mode

Figure 21. eSDHC SDR50 mode output timing diagram

This figure provides the eSDHC DDR50/DDR mode input AC timing diagram.


Figure 22. eSDHC DDR50/DDR mode input AC timing diagram

Teledyne Confidential; Commercially Sensitive Business Data

This figure provides the eSDHC DDR50/DDR mode output AC timing diagram.

Figure 23. eSDHC DDR50/DDR mode output ACtiming diagram

3.13 Ethernet interface (EMI, RGMII, and IEEE Std 1588™)

This section describes the DC and AC electrical characteristics for the EMI, RGMII, and IEEE Std 1588 interfaces

3.13.1 Ethernet management interface (EMI)

This section describes the electrical characteristics for the Ethernet management interface (EMI) interface.

The EMI1 and EMI2 interface timings are compatible with IEEE Std 802.3™ clauses 22 and 45, respectively.

3.13.1.1 EMI DC electrical characteristics

This table provides the EMI DC electrical characteristics.

Table 35. EMI DC electrical characteristics (OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0 or V _{IN} = OV _{IN})	I _{IN}	-	±50	μΑ	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-

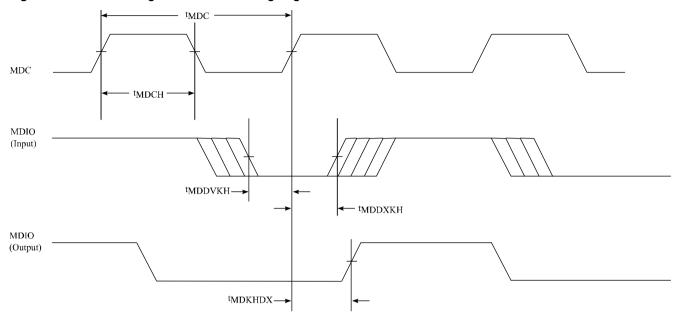
Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

3.13.1.2 EMI AC timing specifications

This table provides the EMI AC timing specifications.

Table 36. EMI AC timing specifications 4, 5, 6


Parameter	Symbol	Min	Max	Unit	Notes
MDC frequency	f _{MDC}	-	5.0	MHz	1
MDC clock pulse width high	t _{MDCH}	80.0	-	ns	-
MDC to MDIO delay	t _{MDKHDX}	Yxt _{enet_clk} - 3	Yxt _{enet_clk} +3	ns	2, 3
MDIO to MDC setup time	t _{MDDVKH}	8.0	-	ns	-
MDIO to MDC hold time	t _{MDDXKH}	0.0	-	ns	-

Notes:

- This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG [MDIO_CLK_DIV] field determines the clock frequency of the MgmtClk Clock EC_MDC.
- 2. t enet clk is the Ethernet clock period x 2.
- 3. MDIO timing is configurable by programming the EMDIO_CFG register fields. The default value of Y = 5. Y is the value determined by EMDIO_CFG[NEG], EMDIO_CFG[MDIO_HOLD], and MDIO[EHOLD]. The easiest way is to program NEG=1, then MDIO is driven at negative edge of MDC, satisfying both setup and hold time requirement of Ethernet PHY.
- 4. The symbols used for timing specifications follow these patterns: t_(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t MDKHDX symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t MDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time.
- 5. Assumes a maximum load of 338 pF.
- 6. See Figure 24.

This figure shows the Ethernet management interface timing diagram.

Figure 24. Ethernet management interface timing diagram

3.13.2 Reduced media-independent interface (RGMII)

3.13.2.1 RGMII DC electrical characteristics

This table provides the DC electrical characteristics for the RGMII interface.

Table 37. RGMII DC electrical characteristics (OV_{DD} = 1.8V)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} =0 or V _{IN} = OV _{IN})	I _{IN}	-	±50	μΑ	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	3
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	3

Notes:

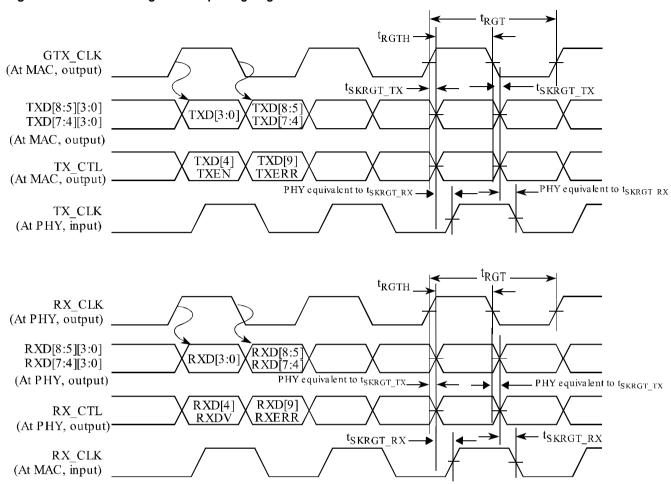
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- The symbol OV_{DD} represents the recommended operating voltage of the supply referenced in Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

3.13.2.2 RGMII AC timing specifications

This table provides the RGMII AC timing specifications.

Table 38. RGMII ACtiming specifications 7,8


Parameter	Symbol	Min	Тур	Max	Unit	Notes
Data to clock output skew (at transmitter)	tskrgt_tx	-500.0	0.0	500.0	ps	1
Data to clock input skew (at receiver)	tskrgt_rx	1.0	-	2.6	ns	2
Clock period duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 10BASE-T and 100BASE-TX	t _{GTH} /t _{RGT}	40.0	50.0	60.0	%	3, 4
Duty cycle for Gigabit	t _{RGTH} /t _{RGT}	45.0	50.0	55.0	%	-
Rise time (20%-80%) OV _{DD} = 1.8V	t _{RGTR}	-	-	0.75	ns	5, 6
Fall time (20%-80%) OV _{DD} = 1.8V	t _{RGTF}	-	-	0.75	ns	5, 6

Notes:

- 1. The frequency of ECn_RX_CLK (input) should not exceed the frequency of ECn_GTX_CLK (output) by more than 300 ppm.
- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their device. If so, additional PCB delay is probably not needed.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.
- Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long
 as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned
 between
- 5. Applies to inputs and outputs.
- 6. The system/board must be designed to ensure this input requirement to the chip is achieved. Proper device operation is guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.
- 7. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII timing. Note that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 8. See Figure 25.

NOTE: NXP guarantees timings generated from the MAC. Board designers must ensure delays needed at the PHY or the MAC. This figure shows the RGMII AC timing and multiplexing diagrams

Figure 25. RGMII AC timing and multiplexing diagrams

3.13.3 IEEE 1588

3.13.3.1 IEEE 1588 DC electrical characteristics

This table provides the IEEE 1588 DC electrical characteristics.

Table 39. IEEE 1588 DC electrical characteristics $(OV_{DD} = 1.8V)^{1}$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0 or V _{IN} = OV _{DD})	I _{IN}	-	±50	μА	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OVIN represents the input voltage of the supply referenced in Recommended Operating Conditions.

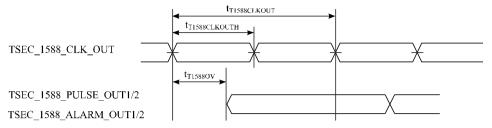
3.13.3.2 IEEE 1588 AC timing specifications

This table provides the AC timing specifications for the IEEE 1588 interface.

Table 40. IEEE 1588 AC timing specifications 2, 3

Parameter	Symbol	Min	Тур	Max	Unit	Notes
TSEC_1588_CLK_IN clock period	t _{1588CLK}	6.0	-		ns	-
TSEC_1588_CLK_IN duty cycle	t _{т1588CLKH} /t _{т1588CLK}	40.0	50.0	60.0	%	-
TSEC_1588_CLK_IN peak-to- peak jitter	t _{T1588CLKI} NJ	-	-	250.0	ps	-
Rise time TSEC_1588_CLK_IN (20% to 80%)	tt1588CLKI NR	1.0	-	2.0	ns	-
Fall time TSEC_1588_CLK_IN (80% to 20%)	tt1588CLKI NF	1.0	-	2.0	ns	-
TSEC_1588_CLK_OUT clock period	t _{т1588} ссько uт	2 x t _{1588CLK}	-	-	ns	-
TSEC_1588_CLK_OUT duty cycle	t _{т1588} сцкотн/t _{т1588} сцко uт	30.0	50.0	70.0	%	-
TSEC_1588_PULSE_OUT1/2, TSEC_1588_ALARM_OUT1/2	t _{T15880V}	0.5	-	4.0	ns	-
TSEC_1588_TRIG_IN1/2 pulse width	t _{т1588} trig н	2 x t _{1588CLK}	-	-	ns	1

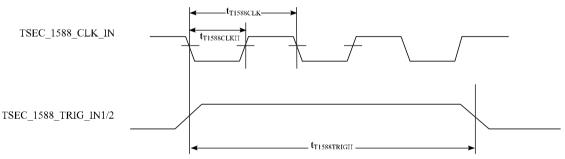
Notes:


^{1.} This needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the chip reference manual for a description of TMR_CTRL registers.

^{2.} See Figure 26.

^{3.} See Figure 27.

This figure shows the data and command output AC timing diagram.


Figure 26. IEEE 1588 output AC timing

Note: The output delay is counted starting at the rising edge if t_{T1588CLKOUT} is non-inverting. Otherwise, it is counted starting at the falling edge.

This figure shows the data and command input AC timing diagram.

Figure 27. IEEE 1588 input AC timing

3.14 General purpose input/output (GPIO)

3.14.1 GPIO DC electrical characteristics

This table provides the DC electrical characteristics for the GPIO interface.

Table 41. GPIO DC electrical characteristics (OV_{DD} = 1.8V)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current ($V_{IN} = 0V$ or $V_{IN} = OV_{DD}$)	I _{IN}	-	±50	μΑ	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-

Notes:

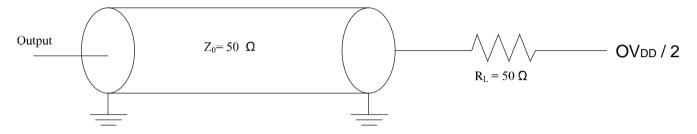
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

3.14.2 GPIO AC timing specifications

This table provides the GPIO input and output AC timing specifications.

Table 42. GPIO AC timing specifications 2


Parameter	Symbol	Min	Max	Unit	Notes
GPIO inputs-minimum pulse width	t _{PIWID}	20.0	-	ns	1

Notes:

- GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs must be synchronized before use by any
 external synchronous logic. GPIO inputs are required to be valid for at least t PIWID ns to ensure proper operation.
- See Figure 28.

The figure below provides the AC test load for the GPIO.

Figure 28. GPIO AC test load

3.15 Flextimer interface

3.15.1 Flextimer DC electrical characteristics

This table provides the DC electrical characteristics for the Flextimer interface.

Table 43. Flextimer DC electrical characteristics (OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	-	±50	μΑ	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-

Notes:

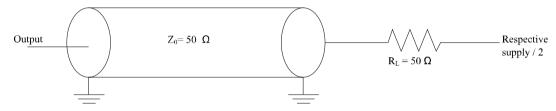
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

3.15.2 Flextimer AC timing specifications

This table provides the Flextimer input and output AC timing specifications.

Table 44. Flextimer AC timing specifications²


Parameter	Symbol	Min	Max	Unit	Notes
Flextimer inputs-minimum pulse width	t _{PIWID}	20.0	-	ns	1

Notes:

- 1. Flextimer inputs and outputs are asynchronous to any visible clock. Flextimer outputs must be synchronized before use by any external synchronous logic. Flextimer inputs are required to be valid for at least t PIWID ns to ensure proper operation.
- 2. See Figure 29.

The figure below provides the AC test load for the Flextimer.

Figure 29. Flextimer AC test load

3.16 Generic interrupt controller (GIC)

3.16.1 GIC DC electrical characteristics

This table provides the DC electrical characteristics for the GIC interface.

Table 45. GIC DC electrical characteristics (OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	-	±50	μА	3
Output high voltage (OV _{DD} = min, I $_{OH}$ = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	-	0.4	V	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

3.16.2 GIC AC timing specifications

This table provides the GIC input and output AC timing specifications.

Table 46. GIC AC timing specifications

Parameter	Symbol	Min	Max	Unit	Notes
GIC inputs-minimum pulse width	t _{PIWID}	3.0	-	SYSCLKs	1

Note:

 GIC inputs and outputs are asynchronous to any visible clock. GIC outputs must be synchronized before use by any external synchronous logic. GIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working in edge triggered mode.

3.17 I2C

3.17.1 I2C DC electrical characteristics

This table provides the DC electrical characteristics for the I2C interface.

Table 47. I²C DC electrical characteristics (OV_{DD} = 1.8V)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Output low voltage (OV _{DD} = min, IOL = 2 mA, OV _{DD} \leq 2V)	V _{OL}	0.0	0.36	V	-
Pulse width of spikes that must be suppressed by the input filter	t _{I2KHKL}	0.0	50.0	ns	3
Input current each I/O pin (input voltage is between 0.1 x OV _{DD} (min) and 0.9 x OV _{DD} (max))	I _I	-	±50	μΑ	4
Capacitance for each I/O pin	Cı	-	10.0	pF	-

Notes:

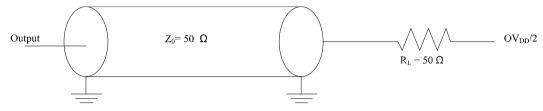
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. See the chip reference manual for information about the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if the supply is switched off.

3.17.2 I2C AC timing specifications

This table provides the AC timing specifications for the I2C interface

Table 48. I²C AC timing specifications ^{5,6,7}

Parameter	Symbol	Standar	d Mode	Fast Mode	•	Unit	Notes
		Min	Max	Min	Max		
Max. Frequency	f _{I2C}		100	-	400.0	kHz	-
Low period of the SCL clock	t _{I2CL}	4.7		1.3	-	μs	-
High period of the SCL clock	t _{I2CH}	4		0.6	-	μs	-
Setup time for a repeated START condition	t _{I2SVKH}	4.7		0.6	-	μs	-
Hold time (repeated) START condition	t _{I2SXKL}	4		0.6	-	μs	-
Setup time	t _{I2DVKH}	250		100.0	-	ns	1
Input hold time	t _{I2DXKL}	0.0		0.0	-	μs	2
Master output delay time	t _{I2OVKL}		3.45		0.9	μs	3
Input setup time for STOP condition	t _{I2PVKH}	4	-	0.6	-	μs	-
Bus free time between a STOP and START condition	t _{I2KHDX}	4.7		1.3	-	μs	-
Capacitive load for each bus line	Cb		400.0	-	400.0	pF	4


Notes:

- 1. A Fast-mode I²C-bus device can be used in a Standard-model²C-bus system, but the requirement of Setup time of 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line max rise time + data Setup Time = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released.
- 2. A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL.
- 3. The maximum t_{I2OVKL} has to be met only if the device does not stretch the LOW period (t_{I2CI}) of the SCL signal.
- 4. Cb = Total capacitance of one bus line in pF
- 5. The symbols used for timing specifications herein follow these patterns: t_(first two letters of functional block)(signal)(state)(reference)(state)</sub> for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high
- 6. (H) state or setup time. Also, t_{I2SXKL} symbolizes I2C timing (I2) for the time that the data with respect to the START condition
- 7. (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I2C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time.
- 8. See Figure 30.
- 9. See Figure 31.

Teledyne Confidential; Commercially Sensitive Business Data

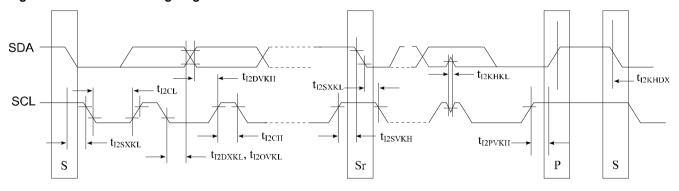

This figure shows the AC test load for the I2C.

Figure 30. I2C AC test load

This figure shows the AC timing diagram for the I²C bus.

Figure 31. I2C bus AC timing diagram

3.18 JTAG

This section describes the DC and AC electrical specifications for the JTAG (IEEE 1149.1) interface.

3.18.1 JTAG DC electrical characteristics

This table provides the DC electrical characteristics for the JTAG (IEEE 1149.1) interface.

Table 49. JTAG DC electrical characteristics (OV_{DD} = 1.8V)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	1.2	-	V	2
Input low voltage	V _{IL}	-	0.6	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	-	-100/+50	μΑ	3
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, I $_{OL}$ = 0.5 mA)	V _{OL}	-	0.4	V	-

Notes:

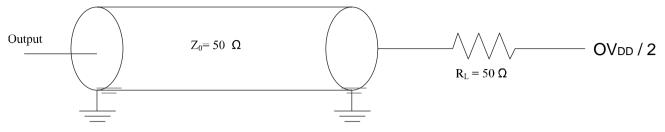
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

3.18.2 JTAG AC timing specifications

This table provides the JTAG AC timing specifications as defined in Figure 32, Figure 33, Figure 34, and Figure 35.

Table 50. JTAG AC timing specifications 3, 4, 5, 6, 7


Parameter	Symbol	Min	Max	Unit	Notes
JTAG external clock frequency of operation	F _{JTG}	0	25	MHz	-
JTAG external clock cycle time	t _{JTG}	40	-	ns	-
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	20	-	ns	-
JTAG external clock rise and fall times	t _{JTGR} /t _{JTGF}	0.0	2.0	ns	-
TRST_B assert time	t _{TRST}	25.0	-	ns	1
Input setup times	t _{JTDVKH}	6	-	ns	-
Input hold times	t _{JTDXKH}	10.0	-	ns	-
Output valid times: boundary-scan data	t _{JTKLDV}	-	20.0	ns	2
Output valid times: TDO	t _{JTKLDV}	-	14	ns	2
Output hold times	t _{JTKLDX}	0.0	-	ns	2

Notes:

- 1. TRST_B is an asynchronous level sensitive signal. The setup time is for test purposes only.
- All outputs are measured from the midpoint voltage of the falling edge of t _{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 3. The symbols used for timing specifications follow these patterns: t(first two letters of functional block)(signal)(state)(reference) (state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t JTDVKH symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the invalid state (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 4. See Figure 32.
- 5. See Figure 33.
- 6. See Figure 34.
- 7. See Figure 35.

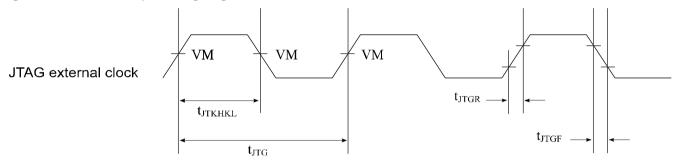
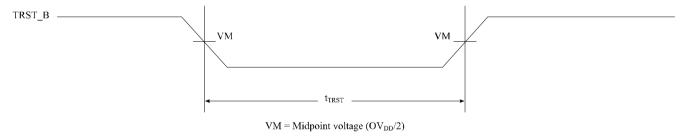

This figure shows the AC test load for TDO and the boundary-scan outputs of the device.

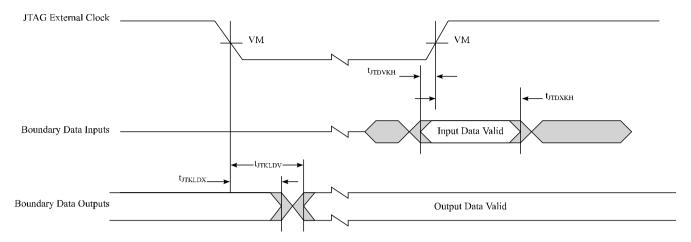
Figure 32. AC test load for the JTAG interface

This figure shows the JTAG clock input timing diagram.


Figure 33. JTAG clock input timing diagram

 $VM = Midpoint voltage (OV_{DD}/2)$

This figure shows the TRST_B timing diagram.


Figure 34. TRST_B timing diagram

This figure shows the boundary-scan timing diagram.

Teledyne Confidential; Commercially Sensitive Business Data

Figure 35. Boundary-scan timing diagram

 $VM = Midpoint Voltage (OV_{DD}/2)$

3.19 Flex serial peripheral interface (FlexSPI)

3.19.1 FlexSPI DC electrical characteristics

This table provides the DC electrical characteristics for the FlexSPI interface.

Table 51. FlexSPI DC electrical characteristics $(OV_{DD} = 1.8V)^{1}$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (0V ≤ V _{IN} ≤ OV _{DD})	I _{IN}	-	±50	μΑ	3
Output high voltage (I _{OH} = -100 μA)	V _{OH}	0.85xOV _{DD}	-	V	-
Output low voltage (I _{OL} = 100 μA)	V _{OL}	-	0.15xOV _{DD}	V	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

3.19.2 FlexSPI AC timing specifications

This table provides the FlexSPI timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Table 52. SDR mode with FlexSPIn_MCR0[RXCLKSRC] = $0x0^{2,3,4}$

Parameter	Symbol	Min	Max	Unit	Notes
Clock frequency	F _{SCK}	-	100.0	MHz	-
Duty cycle	T _{LOW} /THIGH	45	55	%	-
CS output hold time	t _{FSKHOX2}	FLSHxyCR1[TCSH] * T - 0.15	-	ns	1, 5
CS output delay	t _{FSKHOV2}	((FLSHxyCR1[TCS S]+ 0.5) * T) - 5.15	-	ns	1, 5
Setup time for incoming data- without DQS	t _{FSIVKH}	2.4	-	ns	5
Hold time for incoming data without DQS	t _{FSIXKH}	1.05	-	ns	-
Output data delay	t _{FSKHOV}		2.35	ns	-
Output data hold	t _{FSKHOX}	-1.35	-	ns	-

Notes:

- 1. Refer the FLSHxyCR1 QorIQ LX2160ARM for more details, where x: A or B, y: 1 or 2
- 2. See Figure 37.
- 3. See Figure 38.
- 4. See Figure 39.
- 5. T = FlexSPI clock period

This table provides the FlexSPI timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] =0x1 or 0x2

Table 53. SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x1 or $0x2^{2,3,4}$

Parameter	Symbol	Min	Max	Unit	Notes
Clock frequency	Fsck	-	100.0	MHz	-
Duty cycle	T _{LOW} /T _{HIGH}	45	55	%	-
CS output hold time	t _{FSKHOX2}	FLSHxyCR1[TCSH] * T - 0.15	-	ns	1, 5
CS output delay	t _{FSKHOV2}	((FLSHxyCR1[TCS S] + 0.5) * T) - 5.15	-	ns	1, 5
Setup time for incoming data- without DQS	t _{FSIVKH}	2.4	-	ns	-
Hold time for incoming data without DQS	t _{FSIXKH}	1.05	-	ns	-
Output data delay	t _{FSKHOV}		2.35	ns	-
Output data hold	t _{FSKHOX}	-1.35	-	ns	-

Notes:

- 1. Refer the FLSHxyCR1 QorlQ LX2160ARM for more details, where x: A or B, y: 1 or 2
- 2. See Figure 37.
- 3. See Figure 38.
- 4. See Figure 39.
- 5. T = FlexSPI clock period

This table provides the FlexSPI timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] =0x1 or 0x2.

Table 54. DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x1, or 0x2 4, 5, 6

Parameter	Symbol	Min	Max	Unit	Notes
Clock frequency	F _{SCK}	-	75	MHz	-
Duty cycle	TLOW/THIGH	47	53	%	-
CS output hold time	t _{FSKHOX2}	((FLSHxyCR1[TCS H] + 0.5) * T/2) - 0.15	-	ns	1, 7
CS output delay	t _{FSKHOV2}	((FLSHxyCR1[TCS S] + 0.5) * T/2) - 5.15	-	ns	1, 7
Data Valid Window	t _{FSIDVW}	0.3	-	UI	2, 3
Output data delay	t _{FSKHOV/} t _{FSKLOV}	-	3.94	ns	-
Output data hold	t _{FSKHOX} / t _{FSKLOX}	2.8 for Rev 1.0	-	ns	-
		3.0 for Rev 2.0			

Notes:

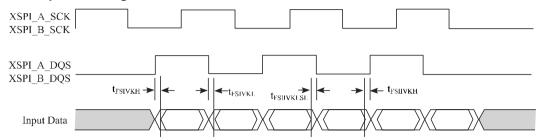
- 1. Refer the FLSHxyCR1 QorlQ LX2160ARM for more details, where x: A or B, y: 1 or 2
- 2. For DDR, Unit Internval (UI) is half of period. For example, 5 ns for 100 MHz
- 3. See "Data Learning Feature" section in QorlQ LXxxxxARM for details
- 4. See Figure 37.
- 5. See Figure 38.
- 6. See Figure 40.
- 7. T = FlexSPI clock period

Teledyne Confidential; Commercially Sensitive Business Data

LX2160A

This table provides the FlexSPI timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3.

Table 55. DDR mode with FlexSPIn_MCR0[RXCLKSRC] = $0x3^{2,3,4,5}$


Parameter	Symbol	Min	Тур	Max	Unit	Notes
Clock frequency	F _{SCK}	-	-	200.0	MHz	-
Duty cycle	T _L OW/T _{HIGH}	45	-	55	%	-
CS output hold time	t _{FSKHOX2}	((FLSHxyCR1[T CSH] + 0.5) * T/2) - 0.15	-	-	ns	1, 6
CS output delay	t _{FSKHOV2}	((FLSHxyCR1[T CSH] + 0.5) * T/2) - 5.15	-	-	ns	1, 6
DQS to data skew	t _{FSIVKH} /t _{FSIVKL}	-		0.6	ns	7
DQS to data hold skew	t _{FSIIVKH} /t _{FSIIVKL}	-		0.9	ns	7
Output data delay	t _{FSKHOV} /t _{FSKLOV}	-	-	1.7	ns	-
Output data hold	t _{FSKHOX} /t _{FSKLOX}	0.8	-	-	ns	-

Notes:

- 1. Refer the FLSHxyCR1 QorIQ LX2160ARM for more details, where x: A or B, y: 1 or 2
- 2. See Figure 37.
- 3. See Figure 38.
- 4. See Figure 40.
- 5. See Figure 36.
- 6. T = FlexSPI clock period
- 7. When DLLxCR = $0x0000_1100$, where x: A or B.

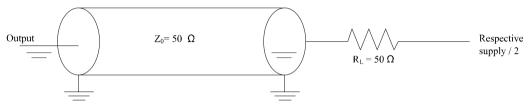

This figure shows the FlexSPI data input timing in DDR mode with an external DQS.

Figure 36. FlexSPI input AC timing-DDR mode with an external DQS

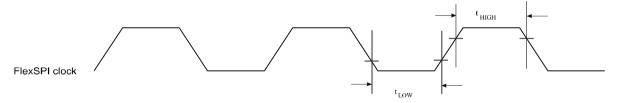

This figure shows the AC test load for the FlexSPI interface.

Figure 37. AC test load for FlexSPI

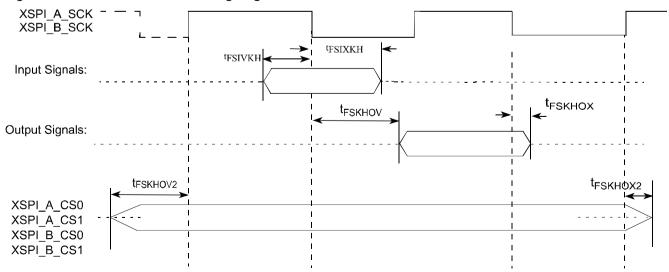
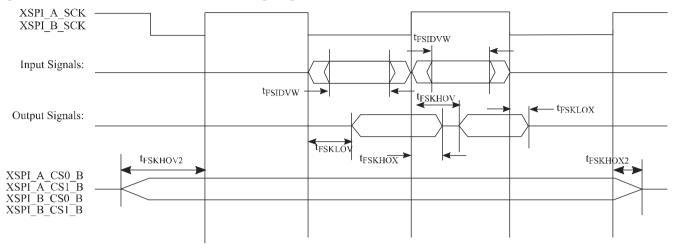

This figure shows the FlexSPI clock input timing diagram.

Figure 38. FlexSPI clock input timing diagram

This figure shows the FlexSPI AC timing diagram for SDR mode.


Figure 39. FlexSPI SDR mode AC timing diagram

Teledyne Confidential; Commercially Sensitive Business Data

This figure shows the FlexSPI AC timing diagram for DDR mode 1 and 2.

Figure 40. FlexSPI DDR mode 1 and 2 AC timing diagram

3.20 Serial peripheral interface (SPI)

3.20.1 SPI DC electrical characteristics

This table provides the DC electrical characteristics for the SPI interface when operating with a single master device.

Table 56. SPI DC electrical characteristics (OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	2
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	2
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	-	±50	μA	3
Output high voltage (I _{OH} = -100 μA)	V _{OH}	0.85xOV _{DD}	-	V	-
Output low voltage (I _{OL} = 100 μA)	V _{OL}	-	0.15xOV _{DD}	V	-

Notes:

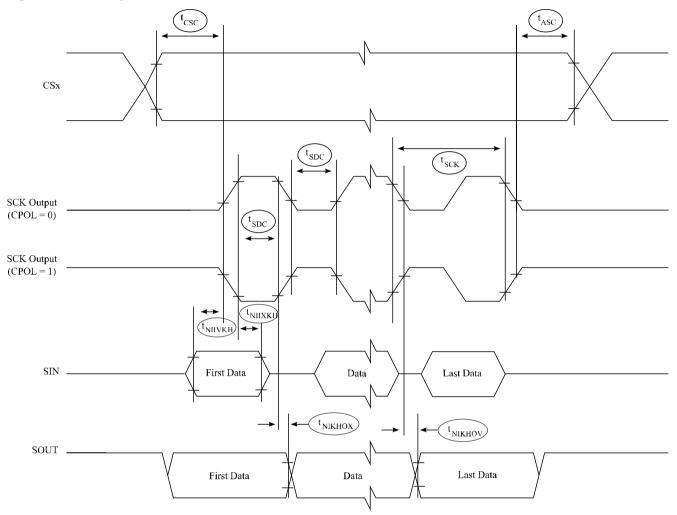
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

3.20.2 SPI AC timing specifications

This table provides the SPI timing specifications when operating with a single master device.

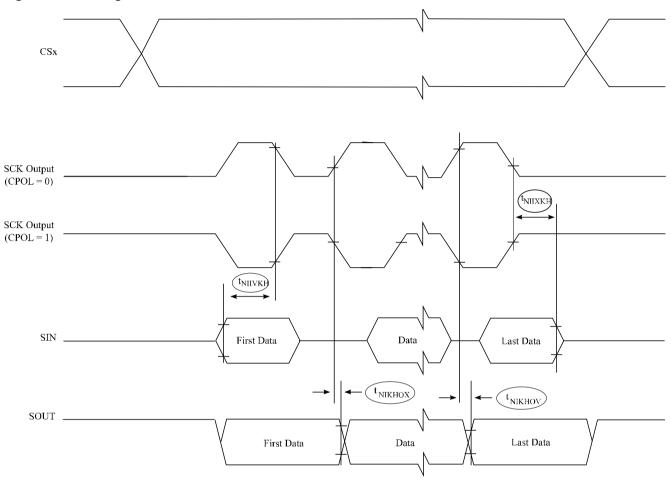
Table 57. SPI ACtiming specifications 6,7


Parameter	Symbol	Min	Max	Unit	Notes
SCK cycle time	t _{SCK}	t _{SYS} * 2	-	ns	1
SCK clock pulse width	t _{SDC}	40.0	60.0	%	-
CS to SCK delay	t _{CSC}	tp*2 - 1.85	-	ns	2, 3, 4
After SCK delay	t _{ASC}	tp*2 + 0.06	-	ns	2, 5, 4
Data setup time for inputs	t _{NIIVKH}	9.0	-	ns	2
Data hold time for inputs	t _{NIIXKH}	0.0	-	ns	2
Data valid (after SCK edge) for outputs	t _{NIKHOV}	-	5.0	ns	2
Data hold time for outputs	t _{NIKHOX}	0.0	-	ns	2

Notes:

- 1. $t_{SYS} = 10 \text{ ns}$
- 2. Master mode
- Refer the CTARx register in QorlQ LX2160ARM for more details. The tCSC = tp * (Delay Scaler Value) * CTARx[PCSSCK] 1.85, where the Delay Scaler Value comes from Table Delay Scaler Encoding. For example, the tCSC = tp * 4 * 3 1.85 when CTARx[PCSSCK] = 0b01, CTARx[CSSCK]=0b0001
- 4. tp is the input clock period for the SPI controller.
- 5. Refer the CTARx register in QorlQ LX2160ARM for more details. The tASC = tp * (Delay Scaler Value) * CTARx[PASC] + 0.06, where the Delay Scaler Value comes from Table Delay Scaler Encoding. For example, the tASC = tp * 8 * 3 + 0.06 when CTARx[PASC] = 0b01, CTARx[ASC]=0b0010
- 6. See Figure 41.
- 7. See Figure 42.

This figure shows the SPI timing master when CPHA = 0.


Figure 41. SPI timing master, CPHA = 0

Teledyne Confidential; Commercially Sensitive Business Data

This figure shows the SPI timing master when CPHA = 1.

Figure 42. SPI timing master, CPHA = 1

3.21 Universal serial bus 3.0 (USB)

This section describes the specification for the on-chip Super Speed (SS) USB 3.0 PHY signals. For High Speed (HS), Full Speed (FS) and Low Speed (LS) specifications of the USB PHY signals, see Chapter 7 in the Universal Serial Bus Revision 2.0 Specification for more information.

3.21.1 USB 3.0 DC electrical characteristics

This table provides the USB 3.0 transmitter DC electrical characteristics at the package pins.

Table 58. USB 3.0 transmitter DC electrical characteristics (USB_HV_{DD}=3.3V, USB_SV_{DD}=0.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit
Differential output voltage	$V_{\text{tx-diff-pp}}$	800.0	1000.0	1200.0	mV_{p-p}
Low power differential output voltage	V _{tx-diff-pp- low}	400.0	-	1200.0	mV_{p-p}
Transmit de-emphasis	V _{tx-de-ratio}	3.0	-	4.0	dB
Differential impedance	Z _{diffTX}	72.0	100.0	120.0	Ω

Teledyne Confidential; Commercially Sensitive Business Data

LX2160A

Parameter	Symbol	Min	Тур	Max	Unit
Transmit common mode impedance	R _{TX-DC}	18.0	-	30.0	Ω
Absolute DC common mode voltage between U1 and U0	T _{TX-CM-DC-} ACTIVEIDLE- DELTA	-	-	200.0	mV
DC electrical idle differential output voltage	V _{TX-IDLE- DIFF-DC}	0.0	-	10.0	mV

Note:

1. For recommended operating conditions, see Recommended Operating Conditions

This table provides the USB 3.0 receiver DC electrical characteristics at the receiver package pins.

Table 59. USB 3.0 receiver DC electrical characteristics (USB_HV_{DD} = 3.3V, USB_SV_{DD} = 0.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential receiver input impedance	R _{RX-DIFF- DC}	72.0	100.0	120.0	Ω	-
Receiver DC common mode impedance	R _{RX-DC}	18.0	-	30.0	Ω	-
DC input CM input impedance for V > 0 during reset or power down	Z _{RX-HIGH- IMP-DC}	25000.0	-	-	Ω	-
LFPS detect threshold	V _{TRX} - IDLE-DET- DC-DIFFpp	100.0	-	300.0	mV	2

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Below the minimum is noise. Must wake up above the maximum.

3.21.2 USB 3.0 AC timing specifications

This table provides the USB 3.0 transmitter AC timing specifications at package pins.

Table 60. USB 3.0 transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Speed	f _{USB}	-	5.0	-	Gb/s	-
Transmitter eye	T _{TX-EYE}	0.625	-	-	UI	-
Unit Interval	UI	199.94	200.0	200.06	ps	1
AC coupling capacitor	AC _{CAP}	75.0	-	200.0	nF	-

Note:

1. UI does not account for SSC-caused variations.

Teledyne Confidential; Commercially Sensitive Business Data

This table provides the USB 3.0 receiver AC timing specifications at the receiver package pins.

Table 61. USB 3.0 receiver AC timing specifications

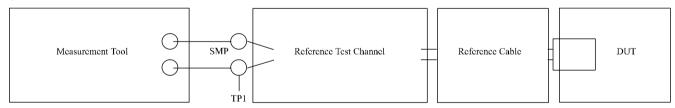
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	199.94	200.0	200.06	ps	1

Note:

1. UI does not account for SSC-caused variations.

This table provides the key LFPS electrical specifications at the transmitter.

Table 62. LFPS electrical specifications at the transmitter 2


Parameter	Symbol	Min	Max	Unit	Notes
Period	t _{Period}	20.0	100.0	ns	-
Peak-to-peak differential amplitude	V _{tx-diff-pp-lfps}	800.0	1200.0	mV	-
Rise/fall time	t _{rise/fall}	-	4.0	ns	1
Duty cycle	DC _{LFPS}	40.0	60.0	%	1, 2

Notes:

- 1. Measured at compliance TP1. See the Transmit normative setup figure below for details.
- 2. See Figure 43.

This figure shows the transmit normative setup with reference channel as per USB 3.0 specifications.

Figure 43. Transmit normative setup

3.22 Controller Automatic Network interface (CAN)

3.22.1 CAN DC electrical characteristics

This table provides the DC electrical characteristics for CAN-FD pins operating at OVDD = 1.8 V.

Table 63. DC electrical characteristics for CAN-FD ($OV_{DD} = 1.8V$)¹

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OVDD	-	V	2
Input low voltage	V _{IL}	-	0.3 x OVDD	V	2
Input current (V _{IN} = 0 V or V _{IN} = OV _{DD})	I _{IN}	-	±50	μΑ	3
Output high voltage (OV _{DD} = min, IOH = -0.5 mA)	V _{OH}	1.35	-	V	-
Output low voltage (OV _{DD} = min, IOL = -0.5 mA)	V _{OL}	-	0.4	V	-

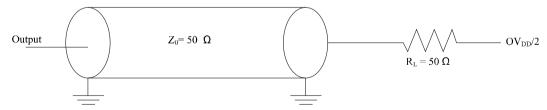
Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Recommended Operating Conditions.
- 3. The symbol OV_{IN} represents the input voltage of the supply referenced in Recommended Operating Conditions

3.22.2 CAN AC electrical characteristics

This table provides the CAN-FD AC timing specifications.

Table 64. CAN-FD AC timing specifications 1


Parameter	Min	Max	Unit
Baud rate	10.0	8000.0	kbps

Note:

1. See Figure 44.

This figure provides the CAN-FD AC test load.

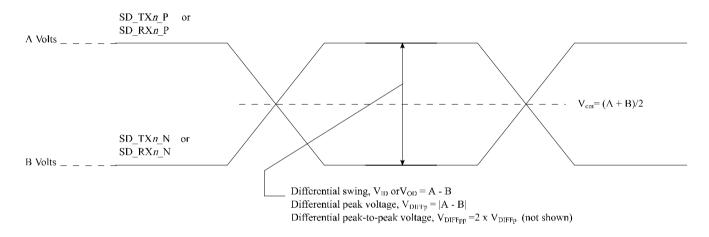
Figure 44. FlexCAN ACtest load

3.23 High-speed serial interfaces (HSSI)

The chip features a Serializer/Deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express, SGMII, 1000Base-KX, USXGMII, XFI, SFI, 10GBase-KR, 25G-AUI, XLAUI, 40GBase-KR, 50GAUI-2, CAUI-4, and serial ATA (SATA) data transfers.

This section describes the most common portion of the SerDes DC electrical specifications: the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter (Tx) and receiver (Rx) reference circuits are also

Teledyne Confidential; Commercially Sensitive Business Data


described.

3.23.1 Signal terms definitions

The SerDes uses differential signaling to transfer data across the serial link. This section defines the terms that are used in the description and specification of differential signals.

This figure shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. This figure shows the waveform for either a transmitter output (SD_TXn_P and SD_TXn_N) or a receiver input (SD_RXn_P and SD_RXn_N). Each signal swings between A volts and B volts where A > B.

Figure 45. Differential voltage definitions for transmitter or receiver

Using this waveform, the definitions are as described in the following list. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment:

Single-Ended Swing	The transmitter output signals and the receiver input signals SD_TXn_P, SD_TXn_N, SD_RXn_P and SD_RXn_N each have a peak-to-peak swing of A - B volts. This is also referred to as each signal wire's single-ended swing.
Differential Output Voltage, VOD (or Differential Output Swing)	The differential output voltage (or swing) of the transmitter, V_{OD} , is defined as the difference of the two complementary output voltages: $V_{SD_TXn}_P - V_{SD_TXn}_N$. The V_{OD} value can be either positive or negative.
Differential Input Voltage, VID (or Differential Input Swing)	The differential input voltage (or swing) of the receiver, V_{ID} , is defined as the difference of the two complementary input voltages: $V_{SD_RXn_P}$ - $V_{SD_RXn_N}$. The V_{ID} value can be either positive or negative.
Differential Peak Voltage, VDIFFp	The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = A - B volts.
Differential Peak-to-Peak, VDIFFp-p	Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A - B to -(A - B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = $2 \times VDIFFp = 2 \times (A - B) $ volts, which is twice the differential swing in amplitude, or twice the differential peak. For example, the output differential peak-to-peak voltage

Teledyne Confidential; Commercially Sensitive Business Data

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers

can also be calculated as VTX-DIFFp-p = $2 \times |VOD|$.

LX2160A

Differential Waveform

The differential waveform is constructed by subtracting the inverting signal (SD_TXn_N, for example) from the non-inverting signal (SD_TXn_P, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. See Figure 50 as an example for differential waveform.

Common Mode Voltage, Vcmv

The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, $Vcm_out = (VSD_TXn_P + VSD_TXn_N) \div 2 = (A + B) \div 2$, which is the arithmetic mean of the two complementary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions.

To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output's differential swing (VOD) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV. In other words, VOD is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p.

3.23.2 SerDes reference clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SD1_PLLF_REF_CLK_P/SD1_PLLF_REF_CLK_N

and SD1_PLLS_REF_CLK_P/SD1_PLLS_REF_CLK_N for SerDes 1, SD2_PLLF_REF_CLK_P/SD2_PLLF_REF_CLK_N and SD2_PLLS_REF_CLK_P/SD2_PLLS_REF_CLK_N for SerDes 2, and SD3_PLLF_REF_CLK_P/SD3_PLLF_REF_CLK_N and SD3_PLLS_REF_CLK_P/SD3_PLLS_REF_CLK_N for SerDes 3.

SerDes 1-3 may be used for various combinations of the following IP blocks based on the RCW Configuration field SRDS_PRTCLn:

- SerDes 1: SGMII, PCIe, USXGMII/XFI/SFI, 100GE, 50GE, 40GE, 25GE
- SerDes 2: SGMII, PCIe, USXGMII/XFI/SFI, SATA
- SerDes 3: PCIe

The following sections describe the SerDes reference clock requirements and provide application information.

3.23.2.1 SerDes spread-spectrum clock source recommendations

SDn_PLLm_REF_CLK_P and SDn_PLLm_REF_CLK_N are designed to work with spread-spectrum clocking for the PCI Express protocol only with the spreading specification defined in Table 64. When using spread-spectrum clocking for PCI Express, both ends of the link partners should use the same reference clock. For best results, a source without significant unintended modulation must be used.

The SerDes transmitter does not support spread-spectrum clocking for the SATA protocol. The SerDes receiver does support spread-spectrum clocking on receive, which means the SerDes receiver can receive data correctly from a SATA serial link partner using spread-spectrum clocking.

Spread-spectrum clocking cannot be used if the same SerDes reference clock is shared with other non-spread-spectrum- supported protocols. For example, if spread-spectrum clocking is desired on a SerDes reference clock for the PCI Express protocol and the same reference clock is used for any other protocol, such as SATA or SGMII

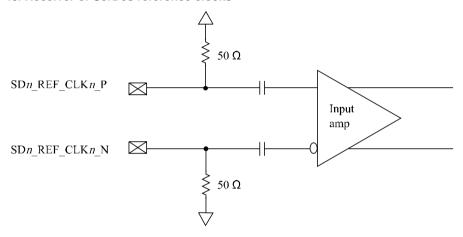
Teledyne Confidential; Commercially Sensitive Business Data

because of the SerDes lane usage mapping option, spread-spectrum clocking cannot be used at all.

This table provides the source recommendations for SerDes spread-spectrum clocking.

Table 65. SerDes spread-spectrum clock source recommendations 1

Parameter	Min	Max	Unit	Notes
Frequency modulation	30	33	kHz	_
Frequency spread	+0	-0.5	%	2


Notes:

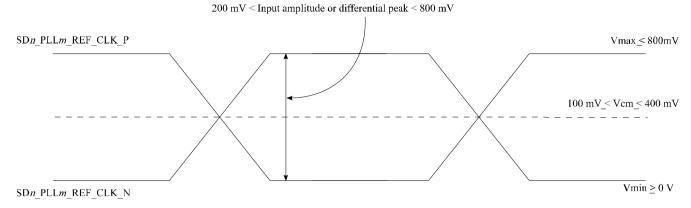
- 1. At recommended operating conditions. See Recommended Operating Conditions.
- 2. Only down-spreading is allowed.

3.23.2.2 SerDes reference clock receiver characteristics

This figure shows a receiver reference diagram of the SerDes reference clocks.

Figure 46. Receiver of SerDes reference clocks

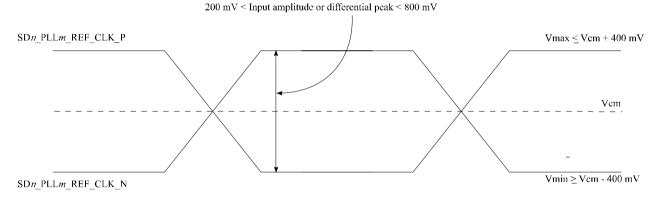
3.23.2.3 DC-level requirement for SerDes reference clocks


The DC level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below.

Differential mode:

- The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-to-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
- For an external DC-coupled connection, as described in SerDes reference clock receiver characteristics, the
 maximum average current requirements sets the requirement for average voltage (common mode voltage) as between
 100 mV and 400 mV.

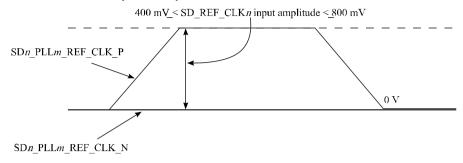
Figure 47 shows the SerDes reference clock input requirement for DC-coupled connection scheme.


Figure 47. Differential reference clock input DC requirements (external DC-coupled)

For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the
external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in
different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode
voltage set to SD_GND. Each signal wire of the differential inputs is allowed to swing below and above the common mode
voltage (SD_GND).

Figure 48 shows the SerDes reference clock input requirement for AC-coupled connection scheme.

Figure 48. Differential reference clock input DC requirements (external AC-coupled)



Single-ended mode:

- The reference clock can also be single-ended. The SDn_PLLm_REF_CLK_P input amplitude (single-ended swing)
 must be between 400 mV and 800 mV peak-to-peak (from V_{MIN} to V_{MAX}) with SDn_PLLm_REF_CLK_N either left
 unconnected or tied to ground.
- The SDn_PLLm_REF_CLK_P input average voltage must be between 200 and 400 mV. Figure 49 shows the SerDes reference clock input requirement for single-ended signaling mode.
- To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled
 externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused
 phase (SDn_PLLm_REF_CLK_N) through the same source impedance as the clock input
 (SDn_PLLm_REF_CLK_P) in use.

Teledyne Confidential; Commercially Sensitive Business Data

Figure 49. Single-ended reference clock input DC requirements

3.23.2.4 SerDes reference clocks AC timing specifications

For protocols with data rates up to 5 Gb/s where there is not reference clock jitter specification (ex: SGMII), use the PCIe 2.5G clock jitter requirements.

For protocols with data rates greater than 5 Gb/s and less than 8 Gb/s where there is no reference clock jitter specification, use the PCIe 5G clock jitter requirements.

For protocols with data rates greater than 8 Gb/s and less than 16 Gb/s where there is no reference clock jitter specification (ex: XLAUI, USXGMII-10.31.25G), use the PCIe 8G or XFI clock jitter requirements.

For protocols with data rates greater than 16 Gb/s where there is no reference clock jitter specification (ex: CAUI-4/50GAUI-2/25G- AUI use the PCIe 16G clock jitter requirements).

Use the protocol's reference clock frequency tolerance specification (ex: +/-100 ppm for SGMII/USXGMII/XFI/SFI/10GBaseKR/ 1000Base-KX/XLAUI/CAUI-4/50GAUI-2/25G-AUI and +/-300 ppm for PCIe).

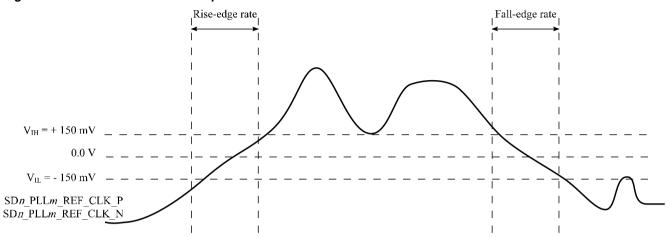
This table defines the AC requirements for SerDes reference clocks for PCI Express. SerDes reference clocks need to be verified by the customer's application design.

Table 66. SDn_PLLm_REF_CLK_P and SDn_PLLm_REF_CLK_N input clock requirements for PCI Express

Parameter	Symbol	Min	Тур	Max	Unit	Notes
SDn_PLLm_REF_CLK_P/SDn_PLLm_REF_CLK_N frequency range	tCLK_REF	-	100/125	-	MHz	-
SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N clock frequency tolerance	tCLK_TOL	-300.0	-	300.0	ppm	1
SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N reference clock duty cycle	tCLK_DUTY	40.0	50.0	60.0	%	2
PCIe 2.5G SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N max deterministic peak-to-peak jitter at 10 ⁻⁶ BER	tCLK_DJ	-	-	42.0	ps P-P	3, 4
PCIe 2.5G SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N total reference clock jitter at 10 ⁻⁶ BER	tCLK_TJ	-	-	86.0	ps P-P	3, 4
PCIe 5G SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N 10 kHz to 1.5 MHz RMS jitter	tREFCLK-LF- RMS	-	-	3.0	ps RMS	5

Teledyne Confidential; Commercially Sensitive Business Data

LX2160A


PCIe 5G SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N > 1.5 MHz to Nyquist RMS jitter	tREFCLK-HF- RMS	-	-	3.1	ps RMS	5
PCIe 8G SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N RMS reference clock jitter	tREFCLK-RMS-DC	-	-	1.0	ps RMS	6
SDn_PLLm_REF_CLK_P/ SDn_PLLm_REF_CLK_N rising/ falling edge rate	tCLKRR/ tCLKFR	0.6	-	4.0	V/ns	7, 8
Differential input high voltage	VIH	150.0	-	-	mV	2
Differential input low voltage	VIL	-	-	-150.0	mV	2
Rising edge rate (SDn_PLLm_REF_CLK_P) to falling edge rate (SDn_PLLm_REF_CLK_N) matching	Rise-Fall matching	-	-	20.0	%	9, 10, 11

Notes:

- 1. For PCI Express (2.5, 5, and 8 GT/s).
- 2. Measurement taken from differential waveform.
- 3. Limits from PCI Express CEM Rev 2.0.
- 4. For PCI Express 2.5 GT/s
- 5. For PCI Express 5 GT/s
- 6. For PCI Express 8 GT/s
- 7. Measured from -150 mV to +150 mV on the differential waveform (derived from SDn_PLLm_REF_CLK_P minus SDn_PLLm_REF_CLK_N). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing.
- 8. See Figure 50.
- 9. Measurement taken from single-ended waveform.
- 10. Matching applies to rising edge for SDn_PLLm_REF_CLK_P and falling edge rate for SDn_PLLm_REF_CLK_N. It is measured using a +/- 75 mV window centered on the median cross point where SDn_PLLm_REF_CLK_P rising meets SDn_PLLm_REF_CLK_N falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge rate of SDn_PLLm_REF_CLK_P must be compared to the fall edge rate of SDn_PLLm_REF_CLK_N, the maximum allowed difference should not exceed 20% of the slowest edge rate.
- 11. See Figure 51.

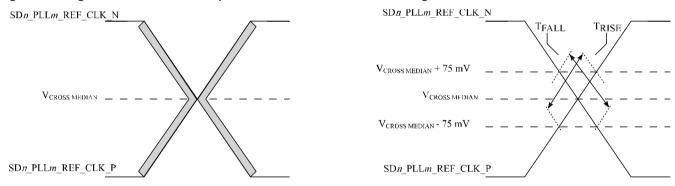

This figure shows the differential measurement points for rise and fall time.

Figure 50. Differential measurement points for rise and fall time

This figure shows the single-ended measurement points for rise and fall time matching.

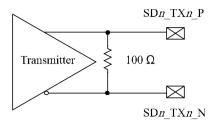
Figure 51. Single-ended measurement points for rise and fall time matching

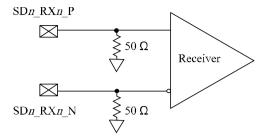
This table defines the AC requirements for SerDes reference clocks for XFI, SFI, XLAUI, and CAUI-4/50GAUI-2/25G-AUI. SerDes reference clocks need to be verified by the customer's application design.

Table 67. SDn_PLLm_REF_CLK_P and SDn_PLLm_REF_CLK_N input clock requirements for XFI, SFI, XLAUI, and CAUI-4/50GAUI-2/25G-AUI

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Frequency range	tCLK_REF	-	156.25/ 161.1328125	-	SFI MHz	-
Clock frequency tolerance	tCLK_TOL	-100.0	-	100.0	ppm	-
Reference clock duty cycle	tCLK_DUTY	40.0	50.0	60.0	%	1
Single side band noise at 1 kHz	at 1 kHz	-	-	-85.0	dBC/Hz	2
Single side band noise at 10 kHz	at 10 kHz	-	-	-108.0	dBC/Hz	2
Single side band noise at 100 kHz	at 100 kHz	-	-	-128.0	dBC/Hz	2
Single side band noise at 1 MHz	at 1 MHz	-	-	-138.0	dBC/Hz	2
Single side band noise at 10 MHz	at 10 MHz	-	-	-138.0	dBC/Hz	2
Random jitter (1.2 MHz to 15 MHz)	tCLK_RJ	-	-	0.8	ps	-
Total reference clock jitter at 10 ⁻¹² BER (1.2 MHz to 15 MHz)	tCLK_TJ	-	-	11.0	ps	-
Spurious noise (1.2 MHz to 15 MHz)	NA	-	-	-75.0	dBC	-

Notes:


- 1. Measurement taken from differential waveform.
- 2. Per XFP specification, Rev 4.5, the Module Jitter Generation spec at XFI optical output is 10mUI (RMS) and 100 mUI (p-p). In the CDR mode, the host is contributing 7 mUI (RMS) and 50 mUI (p-p) jitter.


3.23.3 SerDes transmitter and receiver reference circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 52. SerDes transmitter and receiver reference circuits

Teledyne Confidential; Commercially Sensitive Business Data

The DC and AC specifications of the SerDes data lanes are defined in each interface protocol section below based on the application usage:

- PCI Express
- SATA
- SGMII
- USXGMII
- XFI
- SFI
- 10GBase-KR
- CAUI-4, 50GAUI-2, 25G-AUI
- XLAUI
- 40GBase-KR

Note that an external AC-coupling capacitor is required for the above serial transmission protocols with the capacitor value defined in the specification of each protocol section.

3.23.4 PCI Express

3.23.4.1 Clocking dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 ppm of each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm tolerance.

3.23.4.2 PCI Express clocking requirements for SDn_PLLF_REF_CLK and SDn_PLLS_REF_CLK

SerDes 1/2/3 SD[1:3]_PLLF_REF_CLK/SD[1:3]_PLLF_REF_CLK_B and SD[1:3]_PLLS_REF_CLK/SD[1:3]_PLLS_REF_CLK_B

may be used for various SerDes PCI Express configurations based on the RCW Configuration field SRDS_PRTCL. PCI Express is supported on SerDes 1, 2, and 3.

For more information on these specifications, see SerDes reference clocks.

3.23.4.3 PCI Express DC electrical characteristics

This section describes the PCI Express DC physical layer transmitter specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the PCI Express 1.0 (2.5 GT/s) DC electrical characteristics for the differential output at all transmitters. The parameters are specified at the component pins.

Table 68. PCI Express 1.0 (2.5 GT/s) differential transmitter output DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential peak-to-peak output voltage	V _{TX- DIFFP-P}	800.0	1000.0	1200.0	mV	2

Teledyne Confidential; Commercially Sensitive Business Data

LX2160A

De-emphasized differential output voltage (ratio)	V _{TX-DE- RATIO}	3.0	3.5	4.0	dB	3
DC differential transmitter impedance	Z _{TX-DIFF- DC}	80.0	100.0	120.0	Ω	4
Transmitter DC impedance	Z _{TX-DC}	40.0	50.0	60.0	Ω	5

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. $V_{TX DIFFp-p} = 2 \times |V_{TX-D+} V_{TX-D-}|$
- 3. Ratio of V_{TX-DIFFp-p} of the second and following bits after a transition divided by the V_{TX-DIFFp-p} of the first bit after a transition.
- 4. Transmitter DC differential mode low impedance
- 5. Required transmitter D+ as well as D- DC Impedance during all states.

This table defines the DC electrical characteristics for the PCI Express 1.0 (2.5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 69. PCI Express 1.0 (2.5 GT/s) differential receiver input DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential peak-to-peak voltage	V _{RX- DIFFP-P}	175.0	1000.0	1200.0	mV	2, 3
DC differential input impedance	Z _{RX-DIFF- DC}	80.0	100.0	120.0	Ω	4, 5
DC input impedance	Z _{RX-DC}	40.0	50.0	60.0	Ω	6, 3, 5
Powered down DC input impedance	Z _{RX-HIGH- IMP-DC}	50.0	-	-	kΩ	7, 8
Electrical idle detect threshold	V _{RX-IDLE- DET-DIFFp-p}	65.0	-	175.0	mV	9, 3

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. $V_{RX DIFFp-p} = 2 \times |V_{RX-D+} V_{RX-D-}|$
- 3. Measured at the package pins with a test load of 50Ω to GND on each pin.
- 4. Receiver DC differential mode impedance.
- 5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all configured lanes on a port.
- 6. Required receiver D+ as well as D- DC impedance (50 ± 20% tolerance).
- 7. Required receiver D+ as well as D- DC impedance when the receiver terminations do not have power.
- 8. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300mV above the receiver ground.
- 9. $V_{RX-IDLE-DET-DIFFp-p} = 2 \times |V_{RX-D+} V_{RX-D-}|$

Teledyne Confidential; Commercially Sensitive Business Data

This table defines the PCI Express 2.0 (5 GT/s) DC electrical characteristics for the differential output at all transmitters. The parameters are specified at the component pins.

Table 70. PCI Express 2.0 (5 GT/s) differential transmitter output DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential peak-to-peak output voltage	V _{TX- DIFFP-P}	800.0	1000.0	1200.0	mV	2
Low power differential peak-peak output voltage	V _{TX- DIFFP-P- LOW}	400.0	500.0	1200.0	mV	2
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-3.5d B	3.0	3.5	4.0	dB	3
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-6.0d B	5.5	6.0	6.5	dB	3
DC differential transmitter impedance	Z _{TX-DIFF- DC}	80.0	100.0	120.0	Ω	4
Transmitter DC impedance	Z _{TX-DC}	40.0	50.0	60.0	Ω	5

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. $V_{TX_DIFFp-p} = 2 \times |V_{TX-D+} V_{TX-D-}|$
- 3. Ratio of $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition.
- 4. Transmitter DC differential mode low impedance
- 5. Required transmitter D+ as well as D- DC Impedance during all states.

This table defines the DC electrical characteristics for the PCI Express 2.0 (5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 71. PCI Express 2.0 (5 GT/s) differential receiver input DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential peak-to-peak voltage	V _{RX- DIFFP-P}	120.0	1000.0	1200.0	mV	2, 3
DC differential input impedance	Z _{RX-DIFF- DC}	80.0	100.0	120.0	Ω	4, 5
DC input impedance	Z _{RX-DC}	40.0	50.0	60.0	Ω	6, 3, 5
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50.0	-	-	kΩ	7, 8
Electrical idle detect threshold	V _{RX-IDLE- DET-DIFFp-p}	65.0	-	175.0	mV	9, 3

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. $V_{RX_DIFFp-p} = 2 \times |V_{RX-D+} V_{RX-D-}|$
- 3. Measured at the package pins with a test load of 50Ω to GND on each pin.
- 4. Receiver DC differential mode impedance.

Teledyne Confidential; Commercially Sensitive Business Data

- 5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all configured lanes on a port.
- 6. Required receiver D+ as well as D- DC impedance (50 ± 20% tolerance).
- 7. Required receiver D+ as well as D- DC impedance when the receiver terminations do not have power.
- 8. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300mV above the receiver ground.
- 9. $V_{RX-IDLE-DET-DIFFp-p} = 2 \times |V_{RX-D+} V_{RX-D-}|$

This table defines the PCI Express 3.0 (8 GT/s) DC electrical characteristics for the differential output at all transmitters. The parameters are specified at the component pins.

Table 72 PCI Express 3.0 (8 GT/s) differential transmitter output DC electrical characteristics (SD_OV_{DD}=1.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Full swing transmitter voltage with no TX Eq	V _{TX-FS- NO-EQ}	800.0	-	1300.0	mVp-p	2
Reduced swing transmitter voltage with no TX Eq	V _{TX-RS- NO-EQ}	400.0	-	1300.0	mV	2
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-3.5d B	3.0	3.5	4.0	dB	3
De-emphasized differential output voltage (ratio)	V _{TX-DE- RATIO-6.0d B}	5.5	6.0	6.5	dB	3
Minimum swing during EIEOS for full swing	V _{TX-} EIEOS-FS	250.0	-	-	mVp-p	4
Minimum swing during EIEOS for reduced swing	V _{TX-EIEOS-RS}	232.0	-	-	mVp-p	4
DC differential transmitter impedance	Z _{TX-DIFF- DC}	80.0	100.0	120.0	Ω	5
Transmitter DC impedance	Z _{TX-DC}	40.0	50.0	60.0	Ω	6

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- Voltage measurements for V_{TX-FS-NO-EQ} and V_{TX-RS-NO-EQ} are made using the 64-zeroes/64-ones pattern in the compliance pattern.
- 3. Ratio of $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition.
- 4. Voltage limits comprehend both full swing and reduced swing modes. The transmitter must reject any changes that would violate this specification. The maximum level is covered in the V_{TX-FS-NO-EQ} measurement which represents the maximum peak voltage the transmitter can drive. The V_{TX-EIEOS-FS} and V_{TX-EIEOS-RS} voltage limits are imposed to guarantee the EIEOS threshold of 175 mV _{P-P} at the receiver pin. This parameter is measured using the actual EIEOS pattern that is part of the compliance pattern and then removing the ISI contribution of the breakout channel.
- 5. Transmitter DC differential mode low impedance
- 6. Required transmitter D+ as well as D- DC Impedance during all states.

Teledyne Confidential; Commercially Sensitive Business Data

This table defines the DC electrical characteristics for the PCI Express 3.0 (8 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 73. PCI Express 3.0 (8 GT/s) differential receiver input DC electrical characteristics (SD_SV_{DD}=0.9V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
DC differential input impedance	Z _{RX-DIFF-DC}	80.0	100.0	120.0	Ω	2, 3
DC input impedance	Z _{RX-DC}	40.0	50.0	60.0	Ω	4, 5, 3
Powered down DC input impedance	Z _{RX-HIGH- IMP-DC}	50.0	-	-	kΩ	6, 7
Electrical idle detect threshold	V _{RX-IDLE- DET-DIFFp-p}	65.0	-	175.0	mV	8, 5
Generator launch voltage	V _{RX-} LAUNCH-8 G	-	800.0	-	mV	9
Eye height (-20dB channel)	V _{RX- SV-8G}	25.0	-	-	mV	10
Eye height (-12dB channel)	V _{RX- SV-8G}	50.0	-	-	mV	10
Eye height (-3dB channel)	V _{RX- SV-8G}	200.0	-	-	mV	10

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Receiver DC differential mode impedance.
- Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
 there is a 5 ms transition time before receiver termination values must be met on all configured lanes on a port.
- 4. Required receiver D+ as well as D- DC impedance (50 ± 20% tolerance).
- 5. Measured at the package pins with a test load of 50Ω to GND on each pin.
- 6. Required receiver D+ as well as D- DC impedance when the receiver terminations do not have power.
- 7. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300mV above the receiver ground.
- 8. $V_{RX-IDLE-DET-DIFFp-p} = 2 \times |V_{RX-D+} V_{RX-D-}|$
- 9. Measured at TP1 per PCI Express base specification Rev 3.0.
- 10. Measured at TP2 per PCI Express base specification Rev 3.0. V_{RX-SV-8G} is tested at three different voltages to ensure the receiver device under test is capable of equalizing over a range of channel loss profiles. In the parameter names, "SV" refers to stressed voltage. V_{RX-SV-8G} is referenced to TP2P and is obtained after post-processing data is captured at TP2.

3.23.4.4 PCI Express AC timing specifications

This section describes the PCI Express AC physical layer transmitter specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the PCI Express 1.0 (2.5 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The ACtiming specifications do not include RefClk jitter.

Table 74. PCI Express 1.0 (2.5 GT/s) differential transmitter output AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	399.88	400.0	400.12	ps	1
Minimum transmitter eye width	T _{TX-EYE}	0.75	-	-	UI	2, 3, 4, 5
Maximum time between the jitter median and maximum deviation from the median	T _{TX-EYE- MEDIAN-to- MAX- JITTER}	-	-	0.125	UI	6, 3, 4, 5
AC coupling capacitor	C _{TX}	75.0	-	200.0	nF	7, 8

Notes:

- 1. Each UI is 400 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
- 2. The maximum transmitter jitter can be derived as T _{TX-MAX-JITTER} = 1 -T _{TX-EYE} = 0.25 UI. Does not include spread-spectrum or REFCLK jitter. Includes devices random jitter at 10 ⁻¹².
- Specified at the measurement point into a timing and voltage test load and measured over any 250 consecutive transmitter Uis.
- 4. A T TX-EYE 0.75 UI provides for a a total sum of deterministic and random jitter budget of T TX-JITTER-MAX = 0.25 UI for the transmitter collected over any 250 consecutive transmitter Uis. The T TX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total transmitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 5. See Figure 53.
- Jiiter is defined as the measurement variation of the crossing points (V_{TX-DIFFp-p} = 0 V) in relation to a recovered transmitter UI. A
 recovered transmitter UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of
 the 250 consecutive UI in the center of the 3500 UI used for calculating the transmitter UI.
- 7. All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.
- 8. The chip's SerDes transmitter does not have C TX built-in. An external AC coupling capacitor is required.

This table defines the AC timing specifications for the PCI Express 1.0 (2.5 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 75. PCI Express 1.0 (2.5 GT/s) differential receiver input AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	399.88	400.0	400.12	ps	1
Minimum receiver eye width	T _{RX-EYE}	0.4	-	-	UI	2, 3, 4
Maximum time between the jitter median and maximum deviation from the median	T _{RX-EYE-} MEDIAN-to- MAX- JITTER	-	-	0.3	UI	3, 4, 5

Notes:

- 1. Each UI is 400 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
- 2. The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as T _{RX-MAX-JITTER} = 1 T _{RX-EYE} = 0.6 UI.
- 3. Jitter is defined as the measurement variation of the crossing points (VRX-DIFFp-p = 0 V) in relation to a recovered transmitter UI. A recovered transmitter UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the transmitter UI.
- 4. A T RX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The T RX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the receiver and transmitter are not derived from the same reference clock, the transmitter UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 5. It is recommended that the recovered transmitter UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

This table defines the PCI Express 2.0 (5 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 76. PCI Express 2.0 (5 GT/s) differential transmitter output AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	199.94	200.0	200.06	ps	1
Minimum transmitter eye width	T _{TX-EYE}	0.75	-	-	UI	2, 3, 4, 5
Transmitter deterministic jitter > 1.5 MHz	T _{TX-HF- DJ-DD}	-	-	0.15	UI	-
Transmitter RMS jitter < 1.5 MHz	T _{TX-LF- RMS}	-	3.0	-	ps	6
AC coupling capacitor	C _{TX}	75.0	-	200.0	nF	7, 8

Notes:

- 1. Each UI is 200 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
- 2. The maximum transmitter jitter can be derived as T _{TX-MAX-JITTER} = 1 -T _{TX-EYE} = 0.25 UI. Does not include spread-spectrum or REFCLK jitter. Includes devices random jitter at 10 ⁻¹².
- Specified at the measurement point into a timing and voltage test load and measured over any 250 consecutive transmitter Uis.

Teledyne Confidential; Commercially Sensitive Business Data

- 4. A T TX-EYE 0.75 UI provides for a a total sum of deterministic and random jitter budget of T TX-JITTER-MAX = 0.25 UI for the transmitter collected over any 250 consecutive transmitter Uis. The T TX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total transmitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- See Figure 53.
- All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.
- 7. The chip's SerDes transmitter does not have C TX built-in. An external AC coupling capacitor is required.
- 8. Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps.

This table defines the AC timing specifications for the PCI Express 2.0 (5 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 77. PCI Express 2.0 (5 GT/s) differential receiver input AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	199.4	200.0	200.06	ps	1
Max receiver inherent timing error	T _{RX-TJ-CC}	-	-	0.4	UI	-
Max receiver inherent deterministic timing error	T _{RX-DJ- DD-CC}	-	-	0.3	UI	-

Note:

Each UI is 200 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.

This table defines the PCI Express 3.0 (8 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 78. PCI Express 3.0 (8 GT/s) differential transmitter output AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	124.9625	125.0	125.0375	ps	1
AC coupling capacitor	C _{TX}	176.0	-	265.0	nF	2, 3
Transmitter uncorrelated total jitter	T _{TX-UTJ}	-	-	31.25	ps p-p	-
Transmitter uncorrelated deterministic jitter	T _{TX-UDJ- DD}	-	-	12.0	ps p-p	-
Total uncorrelated pulse width jitter (PWJ)	T _{TX-UPW- TJ}	-	-	24.0	ps p-p	4, 5
Deterministic data dependent jitter (DjDD) uncorrelated pulse width jitter (PWJ)	T _{TX-UPW-DJDD}	-	-	10.0	ps p-p	4, 5
Data-dependent jitter	T _{TX-DDJ}	-	-	18.0	ps p-p	4, 5, 6

Notes:

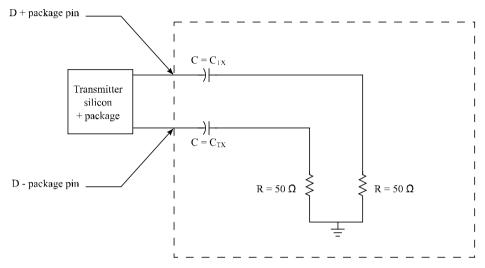
- 1. Each UI is 125 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
- All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.

Teledyne Confidential; Commercially Sensitive Business Data

- 3. The chip's SerDes transmitter does not have C_{TX} built-in. An external AC coupling capacitor is required.
- 4. Measured with optimized preset value after de-embedding to transmitter pin.
- 5. PWJ parameters shall be measured after data-dependent jitter (DDJ) separation.
- 6. The AC specifications do not include Refclk jitter

This table defines the AC timing specifications for the PCI Express 3.0 (8 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 79. PCI Express 3.0 (8 GT/s) differential receiver input AC timing specifications


Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	124.9625	125.0	125.0375	ps	1, 2
Eye width at TP2P	T _{RX- SV-8G}	0.3	-	0.35	UI	2
Differential mode interference	V _{RX-SV- DIFF-8G}	14.0	-	-	mV	3
Sinusoidal jitter at 100 MHz	T _{RX-SV- SJ-8G}	-	-	0.1	UI p-p	4, 5
Random jitter	T _{RX-SV- RJ-8G}	-	-	2.0	ps RMS	6, 5

Notes:

- 1. Each UI is 125 ps ± 300 ppm. UI does not account for spreadspectrum clock dictated variations.
- 2. T _{RX-SV} is referenced to TP2P and is obtained after post-processing data is captured at TP2. T _{RX-SV} includes the effects of applying the behavioral receiver model and receiver behavioral equalization.
- Frequency = 2.1GHz. V_{RX-SV-DIFF-8G} voltage may need to be adjusted over a wide range for the different loss calibration channels.
- 4. Fixed at 100 MHz. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency.
- 5. See Figure 54.
- 6. Random jitter spectrally flat before filtering. Random jitter (Rj) is applied over the following range: The low frequency limit may be between 1.5 and 10 MHz, and the upper limit is 1.0 GHz. Rj may be adjusted to meet the 0.3 UI value for T_{RX-SV-8G}

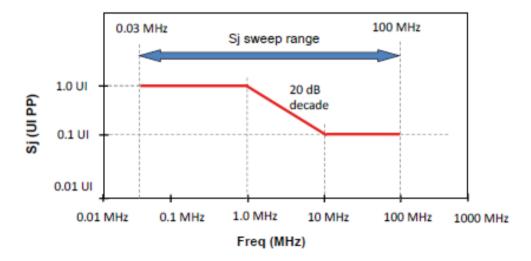

The AC timing and voltage parameters must be verified at the measurement point. The package pins of the device must be connected to the test/measurement load within 0.2 inches of that load, as shown in the following figure. Note that the allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and Dpackage pins.

Figure 53. Test and measurement load

This figure shows the swept sinusoidal jitter mask.

Figure 54. Swept sinusoidal jitter mask

Teledyne Confidential; Commercially Sensitive Business Data

3.23.5 Serial ATA (SATA)

3.23.5.1 SATA DC electrical characteristics

This table provides the differential transmitter output DC characteristics for the SATAinterface at Gen1i/1m or 1.5 Gbits/s transmission.

Table 80. SATA Gen 1i/1m 1.5G transmitter DC electrical characteristics (SD_OV_{DD} = 1.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter differential output voltage	VSATA_TXDI FF	400.0	500.0	600.0	mVp-p	Terminated by a 50Ω load.
Transmitter differential pair impedance	ZSATA_TXDI FFIM	85.0	100.0	115.0	Ω	DC impedance.

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Terminated by a 50Ω load.
- 3. DC impedance.

This table provides the Gen1i/1m or 1.5 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 81. SATA Gen 1i/1m 1.5G receiver input DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential input voltage	VSATA_RXDI FF	240.0	500.0	600.0	mV p-p	2
Differential receiver input impedance	ZSATA_RXS EIM	85.0	100.0	115.0	Ω	3
OOB signal detection threshold	VSATA_OOB	50.0	120.0	240.0	mV p-p	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Voltage relative to common of either signal comprising a differential pair.
- 3. DC impedance.

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbits/s transmission.

Table 82. SATA Gen 2i/2m 3G transmitter DC electrical characteristics (SD_OV DD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter differential output voltage	VSATA_TXDI FF	400.0	-	700.0	mV p-p	Terminated by a 50Ω load.
Transmitter differential pair impedance	ZSATA_TXDI FFIM	85.0	100.0	115.0	Ω	DC impedance.

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Terminated by a 50Ω load.
- 3. DC impedance.

Teledyne Confidential; Commercially Sensitive Business Data

This table provides the Gen2i/2m or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 83. SATA Gen 2i/2m 3G receiver input DC electrical characteristics (SD_SV DD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential input voltage	VSATA_RXDI FF	240.0	-	750.0	mV p-p	2
Differential receiver input impedance	ZSATA_RXS EIM	85.0	100.0	115.0	Ω	3
OOB signal detection threshold	VSATA_OOB	75.0	120.0	240.0	mV p-p	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Voltage relative to common of either signal comprising a differential pair.
- DC impedance.

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen 3i transmission.

Table 84. SATA Gen 3i transmitter DC electrical characteristics (SD_OV DD = 1.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter differential output voltage	VSATA_TXDI FF	240.0	-	900.0	mV p-p	Terminated by a 50Ω load.
Transmitter differential pair impedance	ZSATA_TXDI FFIM	85.0	100.0	115.0	Ω	DC impedance.

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Terminated by a 50Ω load.
- 3. DC impedance.

This table provides the Gen 3i differential receiver input DC characteristics for the SATA interface.

Table 85. SATA Gen 3i receiver input DC electrical characteristics (SD_SV_{DD} = 0.9V)¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential input voltage	VSATA_RXDI FF	240.0	-	1000.0	mV p-p	2
Differential receiver input impedance	ZSATA_RXS EIM	85.0	100.0	115.0	Ω	3
OOB signal detection threshold	VSATA_OOB	75.0	120.0	200.0	mV p-p	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Voltage relative to common of either signal comprising a differential pair.
- 3. DC impedance.

3.23.5.2 SATA AC timing specifications

This table provides the AC requirements for the SATA reference clock. These requirements must be guaranteed by the customer's application design.

Table 86. SATA reference clock input requirements

Parameter	Symbol	Min	Тур	Max	Unit	Notes
SDn_REF_CLKn_P/ SDn_REF_CLKn_N frequency range	t _{CLK_REF}	-	100 / 125	-	MHz	1
SDn_REF_CLK z_P/ SDn_REF_CLKn_N frequency tolerance	t _{CLK_TOL}	-350.0	-	350.0	ppm	-
SDn_REF_CLKn_P/ SDn_REF_CLKn_Nreference clock duty cycle	tclk_duty	40	50	60	%	2
SDn_REF_CLKn_P/ SDn_REF_CLKn_Ncycle-to- cycle clock jitter (period jitter)	t _{CLK_CJ}	-	-	100.0	ps	3
SDn_REF_CLKn_P/ SDn_REF_CLKn_Ntotal reference clock jitter, phase jitter (peak-to-peak)	t _{CLK_PJ}	-50.0	-	50.0	-	3, 4, 5

Notes:

- 1. Caution: Only 100 MHz and 125 MHz have been tested. In-between values do not work correctly with the rest of the system.
- 2. Measurement taken from differential waveform.
- 3. At RefClk input.
- 4. In a frequency band from 150 kHz to 15 MHz at BER of 10 ⁻¹².
- 5. Total peak-to-peak deterministic jitter must be less than or equal to 50 ps.

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 1i/1m or 1.5 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 87. Gen 1i/1m 1.5 G transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	666.4333	666.6667	670.2333	-	-
Channel speed	tch_speed	-	1.5	-	Gbps	-
Total jitter, data-data 5 UI	USATA_TXTJ 5UI	-	-	0.355	UI p-p	1
Total jitter, data-data 250 UI	USATA_TXTJ 250UI	-	-	0.47	UI p-p	1
Deterministic jitter, data-data 5 UI	USATA_TXDJ 5UI	-	-	0.175	UI p-p	1
Deterministic jitter, data-data 250 UI	USATA_TXDJ 250UI	-	-	0.22	UI p-p	1

Note:

This table provides the Gen1i/1m or 1.5 Gbits/s differential receiver input AC characteristics for the SATA interface. The AC timing specifications do not include RefClk jitter.

Table 88. Gen 1i/1m 1.5 G receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	666.4333	666.6667	670.2333	-	-
Total jitter, data-data 5 UI	USATA_RXTJ 5UI	-	-	0.43	UI p-p	Measured at the receiver.
Total jitter, data-data 250 UI	USATA_RXTJ 250UI	-	-	0.6	UI p-p	Measured at the receiver.
Deterministic jitter, data-data 5 UI	USATA_RXDJ 5UI	-	-	0.25	UI p-p	Measured at the receiver.
Deterministic jitter, data-data 250 UI	USATA_RXDJ 250UI	-	-	0.35	UI p-p	Measured at the receiver.

Teledyne Confidential; Commercially Sensitive Business Data

^{1.} Measured at transmitter output pins peak-to-peak phase variation; random data pattern.

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 2i/2m or 3.0 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 89. Gen 2i/2m 3 G transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	333.2167	333.3333	335.1167	-	-
Channel speed	tCH_SPEED	-	3.0	-	Gbps	-
Total jitter, f _{C3DB} = f _{BAUD} ÷ 500	USATA_TXTJfB/500	-	-	0.37	UI p-p	1
Total jitter, f _{C3DB} = f _{BAUD} ÷ 1667	USATA_TXTJ fB/1667	-	-	0.55	UI p-p	1
Deterministic jitter, f _{C3DB} = f _{BAUD} ÷ 500	USATA_TXTJfB/500	-	-	0.19	UI p-p	1
Deterministic jitter, f _{C3DB} = f _{BAUD} ÷ 1667	USATA_TXTJ fB/1667	-	-	0.35	UI p-p	1

Note:

This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 90. Gen 2i/2m 3 G receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	333.2167	333.3333	335.1167	-	-
Total jitter, f _{C3DB} = f _{BAUD} ÷ 500	USATA_RXTJfB/500	-	-	0.6	UI p-p	Measured at the receiver.
Total jitter, f _{C3DB} = f _{BAUD} ÷ 1667	USATA_RXTJ fB/1667	-	-	0.65	UI p-p	Measured at the receiver.
Deterministic jitter, f _{C3DB} = f _{BAUD} ÷ 500	USATA_RXTJfB/500	-	-	0.42	UI p-p	Measured at the receiver.
Deterministic jitter, f _{C3DB} = f _{BAUD} ÷ 1667	USATA_RXTJ fB/1667	-	-	0.35	UI p-p	Measured at the receiver.

^{1.} Measured at transmitter output pins peak-to-peak phase variation; random data pattern

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 3i transmission. The AC timing specifications do not include RefClk jitter.

Table 91. Gen 3i transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	166.6083	167.6667	167.5583	-
Channel speed	t _{CH_SPEED}	-	6.0	-	Gbps
Total jitter before and after compliance interconnect channel	J_T	-	-	0.52	UI p-p
Random jitter before compliance interconnect channel	J _R	-	-	0.18	UI p-p

This table provides the differential receiver input AC characteristics for the SATA interface at Gen 3i transmission The AC timing specifications do not include RefClk jitter.

Table 92. Gen 3i receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	166.6083	167.6667	167.5583	-
Total jitter before and after compliance interconnect channel	J _T	-	-	0.6	UI p-p
Random jitter before compliance interconnect channel	J_R	-	-	0.18	UI p-p

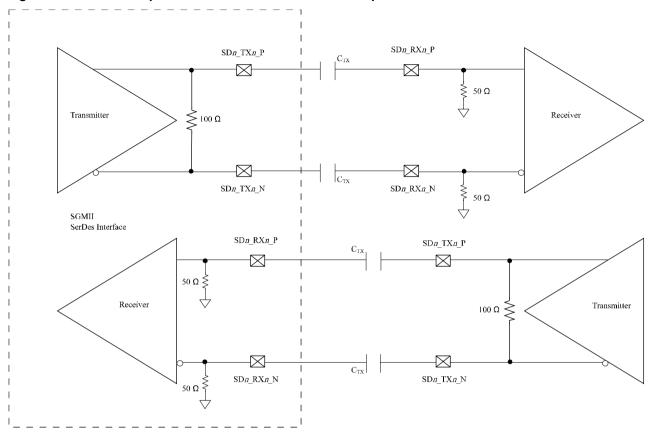
3.23.6 SGMII interface

Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of the chip, as shown in 4-wire AC-coupled SGMII serial link connection example, where C_{TX} is the external (on board) AC-coupled capacitor. Each SerDes transmitter differential pair features $100-\Omega$ output impedance. Each input of the SerDes receiver differential pair features $50-\Omega$ on-die termination to XGNDn. The reference circuit of the SerDes transmitter and receiver is shown in SerDes transmitter and receiver reference circuits.

3.23.6.1 SGMII DC electrical characteristics

This table describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SDn_TXn_P and SDn_TXn_N), as shown in the SGMII transmitter DC measurement circuit figure below.

Table 93. SGMII DC transmitter electrical characteristics (SD_OV_{DD} = 1.8V)^{1,12,13}


Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output high voltage	V _{OH}	-	-	1.5 x V _{OD} _{-max}	mV	2
Output low voltage	V _{OL}	V _{OD} _{-min} /2	-	-	mV	2
Output differential voltage	V _{OD}	320.0	500.0	725.0	mV	3, 4, 5
Output differential voltage	V _{OD}	293.8	459.0	665.6	mV	3, 4, 6
Output differential voltage	V _{OD}	266.9	417.0	604.7	mV	3, 4, 7
Output differential voltage	V _{OD}	240.6	376.0	545.2	mV	3, 4, 8
Output differential voltage	V _{OD}	213.1	333.0	482.9	mV	3, 4, 9
Output differential voltage	V _{OD}	186.9	292.0	423.4	mV	3, 4, 10
Output differential voltage	V _{OD}	160.0	250.0	362.5	mV	3, 4, 11
Output impedance (differential)	R _O	80.0	100.0	120.0	Ω	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. This does not align to DC-coupled SGMII.
- 3. $|V_{OD}| = |V_{SD_TXn_P} V_{SD_TXn_N}|$. $|V_{OD}|$ is also referred to as output differential peak voltage. $V_{TX-DIFFp-p} = 2 \times |V_{OD}|$.
- 4. The $|V_{OD}|$ value shown in Typ column is based on the condition of SD_OVDD-Typ, no common mode offset variation. SerDes transmitter is terminated with 100- Ω differential load between SDn_TXn_P and SDn_TXn_N.
- 5. LNmTECR0[EQ_AMP_RED]=0b000000
- 6. LNmTECR0[EQ_AMP_RED]=0b000001
- 7. LNmTECR0[EQ_AMP_RED]=0b000011
- 8. LNmTECR0[EQ_AMP_RED]=0b000010
- 9. LNmTECR0[EQ_AMP_RED]=0b000110 (default)
- 10. LNmTECR0[EQ_AMP_RED]=0b000111
- 11. LNmTECR0[EQ_AMP_RED]=0b010000
- 12. See Figure 55.
- 13. See Figure 56.

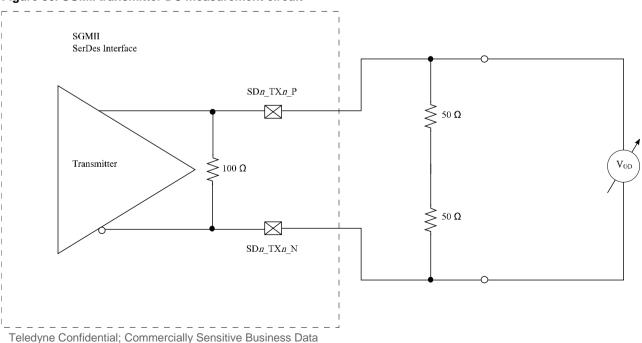

This figure shows an example of a 4-wire AC-coupled SGMII serial link connection.

Figure 55. 4-wire AC-coupled SGMII serial link connection example

This figure shows the SGMII transmitter DC measurement circuit.

Figure 56. SGMII transmitter DC measurement circuit

This table lists the SGMII DC receiver electrical characteristics. Source synchronousclocking is not supported. Clock is recovered from the data.

Table 94 SGMII DC receiver electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Max	Unit	Notes
DC input voltage range	V _{IN}	N/A	N/A	-	2
Input differential voltage (default)	V _{RX_DIFFp-p}	100.0	1200.0	mV	3, 5
Input differential voltage	V _{RX_DIFFp-p}	175.0	1200.0	mV	3, 6
Loss of signal threshold (default)	V _{LOS}	30.0	100.0	mV	4, 5
Loss of signal threshold	V _{LOS}	65.0	175.0	mV	4, 6
Receiver differential input impedance	Z _{RX_DIFF}	80.0	120.0	Ω	-

Notes:

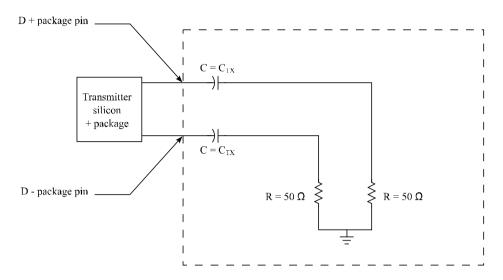
- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Input must be externally AC coupled.
- 3. V_{RX DIFFp-p} is also referred to as peak-to-peak input differential voltage.
- 4. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express.
- 5. LNmRGCR1[DATA_LOST_TH_SEL]=001
- 6. LNmRGCR1[DATA_LOST_TH_SEL]=100

3.23.6.2 SGMII AC timing specifications

This table provides the SGMII transmit AC timing specifications. A source synchronous clock is not supported. The AC timing specifications do not include RefClk jitter.

Table 95. SGMII transmitter AC timing specifications 4

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic jitter	J_D	-	-	0.17	UI p-p	-
Total jitter	J _T	-	-	0.35	UI p-p	1
Unit interval: 1.25 GBaud (SGMII)	UI	800-100ppm	800.0	800+100ppm	ps	2
AC coupling capacitor	C _{TX}	10.0	-	200.0	nF	3


Notes:

- 1. See Figure 58.
- 2. Each UI is $800 \text{ ps} \pm 100 \text{ ppm}$ or $320 \text{ ps} \pm 100 \text{ ppm}$.
- 3. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter output.
- 4. See Figure 57.

Teledyne Confidential; Commercially Sensitive Business Data

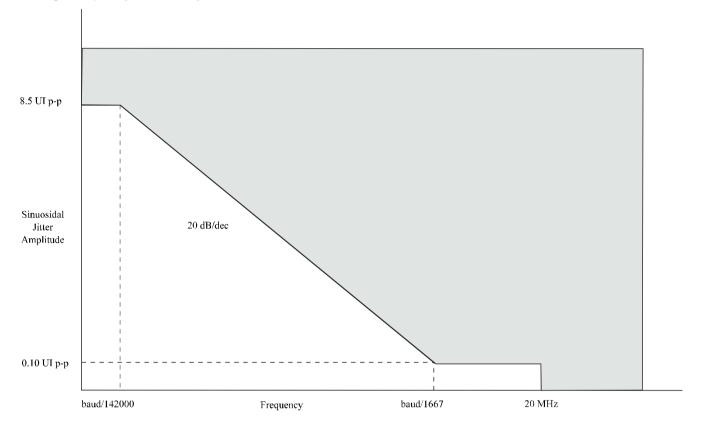
Transmitter and receiver AC characteristics are measured at the transmitter outputs (SDn_TXn_P and SDn_TXn_N) or at the receiver inputs (SDn_RXn_P and SDn_RXn_N) respectively, as shown in this figure.

Figure 57. SGMII AC test/measurement load

This table provides the SGMII receiver AC timing specifications. The AC timing specifications do not include RefClk jitter. Source synchronous clocking is notsupported. Clock is recovered from the data.

Table 96. SGMII receiver AC timing specifications 3

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic jitter tolerance	J_D	-	-	0.37	UI p-p	1
Combined deterministic and random jitter tolerance	J_{DR}	-	-	0.55	UI p-p	1
Total jitter tolerance	J _T	-	-	0.65	UI p-p	1, 2, 3
Unit interval: 1.25 GBaud (SGMII)	UI	800-100ppm	800.0	800+100ppm	ps	1
Bit error ratio	BER	-	-	10 ⁻¹²	-	-


Notes:

- 1. Measured at receiver.
- 2. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of the Single-frequency sinusoidal jitter limits figure shown below. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
- 3. See Figure 58.

Teledyne Confidential; Commercially Sensitive Business Data

The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of this figure.

Figure 58. Single-frequency sinusoidal jitter limits

3.23.7 XFI

3.23.7.1 XFI DC electrical characteristics

This table defines the XFI transmitter DC electrical characteristics.

Table 97. XFI transmitter DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output differential voltage	V _{TX-DIFF}	360.0	-	770.0	mV	2
De-emphasized differential output voltage (ratio at 1.14dB)	V _{TX-DE-RATIO-1.14dB}	0.6	1.1	1.6	dB	3
De-emphasized differential output voltage (ratio at 3.5dB)	V _{TX-DE-RATIO-3.5d} B	3.0	3.5	4.0	dB	4
De-emphasized differential output voltage (ratio at 4.66dB)	V _{TX-DE-RATIO-4.66dB}	4.1	4.6	5.1	dB	5
De-emphasized differential output voltage (ratio at 6.0dB)	V _{TX-DE-RATIO-6.0d} B	5.5	6.0	6.5	dB	6

Teledyne Confidential; Commercially Sensitive Business Data

Parameter	Symbol	Min	Тур	Мах	Unit	Notes
De-emphasized differential output voltage (ratio at 9.5dB)	V _{TX-DE-RATIO-9.5d} B	9.0	9.5	10.0	dB	7
Differential resistance	T _{RD}	80.0	100.0	120.0	Ω	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. LNmTECR0[EQ_AMP_RED]=000111
- 3. LNmTECR0[EQ_POST1Q]=00011
- 4. LNmTECR0[EQ_POST1Q]=01000
- 5. LNmTECR0[EQ_POST1Q]=01010
- 6. LNmTECR0[EQ_POST1Q]=01100
- 7. LNmTECR0[EQ_POST1Q]= 10000

This table defines the XFI receiver DC electrical characteristics.

Table 98. XFI receiver DC electrical characteristics (SD SVDD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential resistance	R _{RD}	80.0	100.0	120.0	Ω	-
Input differential voltage	V _{RX-DIFF}	110.0	-	1050.0	mV	2

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. Measured at receiver.

3.23.7.2 XFI AC timing specifications

This table defines the XFI transmitter AC timing specifications. RefClk jitter is not included.

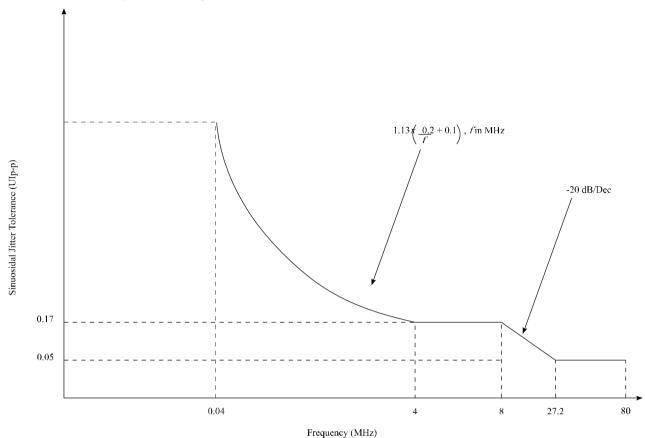
Table 99. XFI transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Transmitter baud Rate	T _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s
Unit Interval	UI	-	96.96	-	ps
Deterministic jitter	DJ	-	-	0.15	UI p-p
Total jitter tolerance	TJ	-	-	0.3	UI p-p

Teledyne Confidential; Commercially Sensitive Business Data

This table defines the XFI receiver AC timing specifications. RefClk jitter is not included.

Table 100. XFI receiver AC timing specifications 3


Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	-	96.96	-	ps	-
Receiver baud rate	R _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s	-
Total non-EQJ jitter	T _{NON-EQJ}	-	-	0.45	UI p-p	1
Total jitter tolerance	T _J	-	-	0.65	UI p-p	1, 2

Notes:

- 1. The total jitter (TJ) consists of Random Jitter (RJ), Duty Cycle Distortion (DCD), Periodic Jitter (PJ), and Inter-Symbol Interference (ISI). Non-EQJ jitter can include duty cycle distortion (DCD), random jitter (RJ), and periodic jitter (PJ). Non-EQJ jitter is uncorrelated to the primary data stream with exception of the DCD and so cannot be equalized by the receiver under test. It can exhibit a wide spectrum. Non EQJ = TJ ISI = RJ + DCD + PJ.
- 2. The XFI channel has a loss budget of 9.6 dB @5.5GHz. The channel loss including connector @ 5.5GHz is 6dB. The channel crosstalk and reflection margin is 3.6dB. Manual tuning of TX Equalization and amplitude will be required for performance optimization.
- 3. See Figure 59.

This figure shows the sinusoidal jitter tolerance of XFI receiver.

Figure 59. XFI host receiver input sinusoidal jitter tolerance

3.23.8 SFI

This section presents the SFI+ specifications at data rate 10.3125Gb/s.

3.23.8.1 SFI DC electrical characteristics

This table defines the SFI+ transmitter DC electrical characteristics.

Table 101. SFI+ host transmitter DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output differential voltage	V _{TX-DIFF}	190	-	700	mV _{p-p}	2
De-emphasized differential output voltage (ratio at 1.14dB)	V _{TX-DE-RATIO-1.14dB}	0.6	1.1	1.6	dB	3
De-emphasized differential output voltage (ratio at 3.5dB)	V _{TX-DE-RATIO-3.5d B}	3	3.5	4	dB	4
De-emphasized differential output voltage (ratio at 4.66dB)	V _{TX-DE-RATIO-4.66dB}	4.1	4.6	5.1	dB	5

Teledyne Confidential; Commercially Sensitive Business Data

Parameter	Symbol	Min	Тур	Max	Unit	Notes
De-emphasized differential output voltage (ratio at 6.0dB)	V _{TX-DE-RATIO-6.0d} B	5.5	6.0	6.5	dB	6
De-emphasized differential output voltage (ratio at 9.5dB)	V _{TX-DE-RATIO-9.5d} B	9	9.5	10	dB	7
Differential resistance	T _{RD}	80	100	120	Ω	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. LNmTECR0[EQ_AMP_RED]=000111
- 3. LNmTECR0[EQ_POST1Q]=00011
- 4. LNmTECR0[EQ_POST1Q]=01000
- 5. LNmTECR0[EQ_POST1Q]=01010
- 6. LNmTECR0[EQ_POST1Q]=01100
- 7. LNmTECR0[EQ_POST1Q]=10000

This table defines the SFI+ host receiver DC electrical characteristics.

Table 102. SFI+ host receiver DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Differential resistance	R _{RD}	80		120	Ω	-
Input differential voltage	V _{RX-DIFF}	300	-	850	mV _{p-p}	-

Note:

1. For recommended operating conditions, see Recommended Operating Conditions.

3.23.8.2 SFIAC timing specifications

This table defines the SFI+ host transmitter AC timing specifications.

Table 103. SFI+ host transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Transmitter baud Rate	T _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s
Unit Interval	UI	-	96.96	-	ps
Data dependent jitter	DDJ	-	-	0.1	UI p-p
Data dependent pulse width shrinkage	DDPWS			0.055	UI p-p
Uncorrelated jitter	UJ			0.023	UI (RMS)
Total jitter tolerance	TJ	-	-	0.28	UI p-p

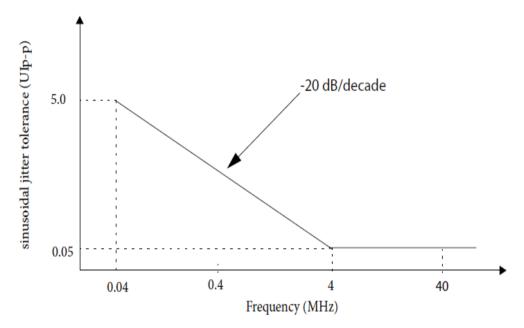
Notes:

- 1. Duty cycle distortion (DCD) and Pulse Width Shrinkage (DDPWS) are components of DDJ. DDJ is the range (max-min) of the timing variations.
- 2. The AC specifications do not include Refclk jitter.

This table defines the SFI+ host receiver AC timing specifications.

Table 104. SFI+ host receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval	UI	-	96.96	-	ps	-
Receiver baud rate	R _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s	-
99% jitter	J2			0.42		1
Pulse width shrinkage jitter	DDPWS	-	-	0.3	UI p-p	2
Total jitter	TJ	-	-	0.7	UI p-p	


Notes:

- 1. The 99% jitter is per SFF-8431 Rev4.1 and includes sinusoidal jitter, per Figure 60.
- In practice the test implementer may trade DDPWS with other pulse width shrinkage from the sinusoidal interferer per SFF-8431 Rev4.1.
- The SFI total channel Link Budget when measured with Host Compliance board is 9.0 dB @5.5GHz. The channel
- 4. loss including connector measured with Host Compliance board @ 5.5GHz is 6.5dB. The penalty for reflections and other impairments is 2.5dB. Manual tuning of TX Equalization and amplitude will be required for performance optimization.
- 5. The AC specifications do not include Refclk jitter.

Teledyne Confidential; Commercially Sensitive Business Data

This figure shows the sinusoidal jitter tolerance of SFI receiver.

Figure 60. SFI+ SR and LR host receiver input datacom sinusoidal jitter tolerance

3.23.9 SFP+ direct attach copper

SFP+ direct attach copper is supported for passive copper cable compliant per SFF-8472.

3.23.9.1 SFP+ direct attach copper DC electrical characteristics

The SFP+ host supporting direct attach cables must meet transmitter output DC specifications in Table 100 at reference point B per SFF-8472. In addition, the SFP+ host transmitter must meet the specifications in the table below.

This table defines the SFP+ host transmitter output DC specifications.

Table 105. SFP+ host transmitter output DC electrical characteristics at B for Cu (SD_OVDD = 1.8V) 1

Parameters - B	Symbol	Min	Тур	Max	Unit
Voltage modulation amplitude (p-p)	VMA	300			mV
Transmitter Qsq	Qsq	63.1			
Output AC common mode voltage				12.0	mV (RMS)
Host output TWDPc	TWDPc			10.7	dBe

Notes:

- For recommended operating conditions, see Recommended Operating Conditions.
- 2. Qsq = 1/RN if the one level and zero level noises are identical. RN is relative noise per SFF-8472.
- 3. Host electrical output measured with LRM 14 taps FFE and 5 taps DFE Equalizer with PRBS9 for copper direct attach stressor.
- 4. The TWDPc is the host transmitter penalty for copper cable stressor.

The SFP+ host supporting direct attach cables must meet the receiver output DC specifications in Table 101.

3.23.9.2 SFP+ direct attach AC timing specifications

The SFP+ host supporting direct attach cables must meet the transmitter output AC specifications in Table 102 at reference point B per SFF-8472.

The SFP+ host supporting direct attach cables must meet the AC specifications in Table 103 in at reference point B per SFF-8472. In addition, the SFP+ host receiver must meet required 1×10⁻¹² BER when tested with the stressed signal described per SFF-847.

3.23.10 1000Base-KX

3.23.10.1 1000Base-KX DC electrical characteristics

This table describes the 1000Base-KX SerDes transmitter DC specification at TP1 per IEEE Std 802.3-2015. Transmitter DC characteristics are measured at the transmitter outputs (SDn_TXn_P and SDn_TXn_N).

Table 106. 1000Base-KX transmitter DC electrical characteristics (SD_OV_{DD} = 1.8V) ¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output differential voltage	V _{TX-DIFFp-p}	800.0	-	1600.0	mV	2
Differential resistance	T _{RD}	80.0	100.0	120.0	Ω	-

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. SRDSxLNmTECR0[EQ_AMP_RED]=00_0000

This table provides the 1000Base-KX receiver DC timing specifications.

Table 107. 1000Base-KX receiver DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Max	Unit
Input differential voltage	V _{RX-DIFFp-p}	-	1600.0	mV
Differential resistance	T _{RDIN}	80.0	120.0	Ω

Note:

1. For recommended operating conditions, see Recommended Operating Conditions

3.23.10.2 1000Base-KX AC timing specifications

This table defines the 1000Base-KX transmitter AC timing specifications.

Table 108. 1000Base-KX transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Baud rate	T _{BAUD}	1.25-100ppm	1.25	1.25+100ppm	Gb/s	-
Uncorrelated high probability jitter/ Random Jitter	T _{UHPJ} /T _{RJ}	-	-	0.15	UI p-p	-
Deterministic jitter tolerance	T _{DJ}	-	-	0.1	UI p-p	-
Total jitter tolerance	T _{TJ}	-	-	0.25	UI p-p	1

Note:

1. Total jitter is specified at a BER of 10 ⁻¹².

Teledyne Confidential; Commercially Sensitive Business Data

This table defines the 1000Base-KX receiver AC timing specifications.

Table 109. 1000Base-KX receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Baud rate	R _{BAUD}	1.25-100ppm	1.25	1.25+100ppm	Gb/s	-
Total jitter tolerance	R _{TJ}	-	-	Per IEEE 802.3ap-clause 70.	UI p-p	1
Random jitter	R _{RJ}	-	-	0.15	UI p-p	2
Sinusoidal jitter (maximum)	R _{SJ-max}	-	-	0.1	UI p-p	1

Notes:

- The receiver interference tolerance level of this parameter shall be measured as described in Annex 69A of the IEEE Std 802.3ap-2007.
- 2. Random jitter is specified at a BER of 10 -12.

3.23.11 10GBase-KR

3.23.11.1 10GBase-KR clocking requirements for SDn_REF_CLKn and SDn_REF_CLKn_B

Only SerDes 1 and SerDes 2 may be used for SerDes 10GBase-KR configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see SerDes reference clocks .

3.23.11.2 10GBase-KR DC electrical characteristics

This table defines the 10GBase-KR transmitter DC electrical characteristics.

Table 110. 10GBase-KR transmitter DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output differential voltage	V _{TX-DIFF}	800.0	-	1200.0	mV	2
De-emphasized differential output voltage (ratio at 1.14dB)	V _{TX-DE-} RATIO-1.14dB	0.6	1.1	1.6	dB	3
De-emphasized differential output voltage (ratio at 3.5dB)	V _{TX-DE-} RATIO-3.5dB	3.0	3.5	4.0	dB	4
De-emphasized differential output voltage (ratio at 4.66dB)	V _{TX-DE-} RATIO-4.66dB	4.1	4.6	5.1	dB	5
De-emphasized differential output voltage (ratio at 6.0dB)	V _{TX-DE-} RATIO-6.0dB	5.5	6.0	6.5	dB	6
De-emphasized differential output voltage (ratio at 9.5dB)	V _{TX-DE-} RATIO-9.5d B	9.0	9.5	10.0	dB	7
Differential resistance	T _{RD}	80.0	100.0	120.0	Ω	-

Notes:

Teledyne Confidential; Commercially Sensitive Business Data

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- 2. LNmTECR0[EQ_AMP_RED]=000000
- 3. LNmTECR0[EQ POST1Q]=00011
- 4. LNmTECR0[EQ_POST1Q]=01000
- 5. LNmTECR0[EQ_POST1Q]=01010
- 6. LNmTECR0[EQ_POST1Q]=01100
- 7. LNmTECR0[EQ_POST1Q]= 10000

This table defines the 10GBase-KR receiver DC electrical characteristics.

Table 111. 10GBase-KR receiver DC electrical characteristics (SD_SV DD = 0.9V)1

Parameter	Symbol	Min	Max	Unit
Input differential voltage	V _{RX-DIFF}	-	1200.0	mV
Differential resistance	R _{RD}	80.0	120.0	Ω

Note:

1. For recommended operating conditions, see Recommended Operating Conditions.

3.23.11.3 10GBase-KR AC timing specifications

This table defines the 10GBase-KR transmitter AC timing specifications. RefClk jitter is not included.

Table 112. 10GBase-KR transmitter AC timing specifications

Parameter	Symbol	Min	Тур	ур Мах	
Transmitter baud rate	T _{BAUD}	10.3125 - 100 ppm	10.3125	10.3125 + 100 ppm	GBd
Deterministic jitter	T_DJ	-	-	0.15	UI p-p
Total jitter	T_TJ	-	-	0.3	UI p-p

This table defines the 10GBase-KR receiver AC timing specifications. RefClk jitter is not included.

Table 113. 10GBase-KR receiver AC timing specifications 3

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	10.3125 – 100 ppm	10.3125	10.3125 + 100 ppm	GBd	-
Total jitter	TJ	-	-	1.0	UI p-p	1, 2
Random jitter	R_J	-	-	0.13	UI p-p	1
Sinusoidal jitter, maximum	S _{J-max}	-	-	0.115	UI p-p	1
Duty cycle distortion	D _{CD}	-	-	0.035	UI p-p	1

Notes:

- 1. The AC specifications do not include Refclk jitter.
- 2. The total applied Jitter Tj = ISI + Rj + DCD + Sj-max, where ISI is jitter due to frequency dependent loss.
- 3. TX equalization and amplitude tuning is through software for performance optimization, as in NXP provided SDKs.

Teledyne Confidential; Commercially Sensitive Business Data

3.23.12 CAUI-4, 50GAUI-2, and 25G-AUI interface

The IEEE Std 802.3-2015. 100 Gb/s Attachment Unit Interface (CAUI-4) is intended for use as a chip-to-chip or a chip-to-module interface. The four-lane version (CAUI-4) in Annex 83D and Annex 83E supports 100GbE. Each lane operates at 25.78125 GBaud. 50GAUI-2 supports 50GbE (2 lanes, each running @ 25.78125 GBaud) and 25G-AUI supports 25GbE (single lane @ 25.78125 GBaud)

3.23.12.1 CAUI-4/50GAUI-2/25G-AUI DC electrical characteristics

This table defines the CAUI-4/50GAUI-2/25G-AUI transmitter DC electrical characteristics.

Table 114. CAUI-4/50GAUI-2/25G-AUI transmitter DC electrical characteristics (SD_OV_{DD}=1.8V)¹

Parameter	Symbol	Min	Тур	Max	Unit
Differential peak-to-peak output voltage	V _{TX-DIFF}			1200.0	mV
Differential peak-to-peak output voltage transmitter disabled	V _{TX-DIS- DIFF}	0.0	-	30.0	mV
DC common mode voltage	V _{CM}	0.0	-	1.9	V
Output waveform steady state voltage	V _f	0.4	-	0.6	V
Output waveforem linear fit pulse peak	$V_{P(k)}$	0.71 * V _f	-	-	V
Differential resistance	Z _{TX-DIFF-DC}	80.0	100.0	120.0	Ω

Note:

This table defines the CAUI-4/50GAUI-2/25G-AUI receiver DC electrical characteristics.

Table 115. CAUI-4/50GAUI-2/25G-AUI receiver DC electrical characteristics (SD_SV_{DD}=0.9V)¹

Parameter	Symbol	Min	Мах	Unit
Differential resistance	Z _{RX-DIFF-DC}	80.0	120.0	Ω

Note:

1. For recommended operating conditions, see Recommended Operating Conditions.

^{1.} For recommended operating conditions, see Recommended Operating Conditions.

3.23.12.2 CAUI-4/50GAUI-2/25G-AUI AC timing characteristics

This table defines the CAUI-4/50GAUI-2/25G-AUI transmitter AC timing specifications.

Table 116. CAUI-4/50GAUI-2/25G-AUI transmitter AC timing specifications 1, 2

Parameter	Symbol	Min	Тур	Max	Unit
Transmitter baud Rate	T _{BAUD}	25.78125-100 ppm	25.78125	25.78125+100 ppm	Gb/s
AC common mode output voltage RMS	V _{CM}	-	-	0.012	V
Bounded uncorrelated jitter	T _{BUJ}			0.1	UI p-p
Even-odd jitter	T _{EOJ}	-	-	0.035	UI
Total uncorrelated jitter	T _{TUJ}	-	-	0.26	UI p-p
Signal-to-noise-and-distortion ratio	SINAD	27.0	-	-	dB

Notes:

- 1. See Figure 61.
- 2. See Figure 62.

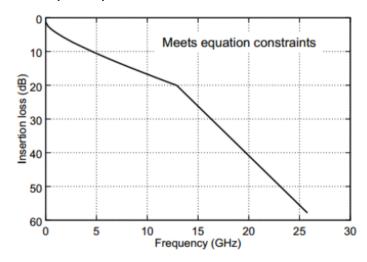

This figure shows the applied sinusoidal jitter tolerance of the CAUI-4/50GAUI-2/25G-AUI receiver.

Figure 61. CAUI-4/50GAUI-2/25G-AUI receiver applied sinusoidal jitter

Frequency range	Sinusoidal jitter, peak-to-peak (UI)
f < 100 kHz	Not specified
100 kHz < f≤ 10 MHz	5 x 10 ⁵ /f
10 MHz < f < 10 <i>LB</i> ^a	0.05

This figure provides the ISI channel loss profile.

Figure 62. CAUI-4/50GAUI-2/25G-AUI chip-to-chip channel insertion

Teledyne Confidential; Commercially Sensitive Business Data

3.23.13 USXGMII interface (USXGMII)

3.23.13.1 USXGMII DC electrical characteristics

This table defines the 10G-SXGMII transmitter DC electrical characteristics.

Table 117. 10G-SXGMII transmitter DC electrical characteristics (SD_OVDD = 1.8V) 1

Parameter	Symbol	Min	Тур	Max	Unit
Output differential voltage	V _{TX-DIFF}	800.0	-	1200.0	mV
De-emphasized differential output voltage (ratio at 1.14dB)	V _{TX-DE-} RATIO-1.14dB	0.6	1.1	1.6	dB
De-emphasized differential output voltage (ratio at 3.5dB)	V _{TX-DE-} RATIO-3.5dB	3.0	3.5	4.0	dB
De-emphasized differential output voltage (ratio at 4.66dB)	V _{TX-DE-} RATIO-4.66dB	4.1	4.6	5.1	dB
De-emphasized differential output voltage (ratio at 6.0dB)	V _{TX-DE-} RATIO-6.0dB	5.5	6.0	6.5	dB
De-emphasized differential output voltage (ratio at 9.5dB)	V _{TX-DE-} RATIO-9.5dB	9.0	9.5	10.0	dB
Differential resistance	T _{RD}	80.0	100.0	120.0	Ω

Note:

This table defines the 10G-SXGMIIreceiver DC electrical characteristics.

Table 118. 10G-SXGMII receiver DC electrical characteristics (SD_SVDD = 0.9V) 1

Parameter	Symbol	Min	Max	Unit
Input differential voltage	V _{RX-DIFF}	-	1200.0	mV
Differential resistance	R _{RD}	80.0	120.0	Ω

Note:

1. For recommended operating conditions, see Recommended Operating Conditions.

^{1.} For recommended operating conditions, see Recommended Operating Conditions.

3.23.13.2 USXGMII AC timing characteristics

This table defines the 10G-SXGMIltransmitter AC timing specifications. RefClk jitter is not included.

Table 119. 10G-SXGMII transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Мах	Unit
Transmitter baud rate	T _{BAUD}	10.3125 - 100 ppm	10.3125	10.3125 + 100 ppm	GBd
Uncorrelated high probability jitter/ Random Jitter	T _{UHPJ} /T _{RJ}	-	-	0.15	UI p-p
Deterministic jitter	DJ	-	-	0.15	UI p-p
Total jitter	TJ	-	-	0.3	UI p-p

This table defines the 10G-SXGMIIreceiver AC timing specifications. RefClk jitter is not included.

Table 120. 10G-SXGMII receiver AC timing specifications 3

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	10.3125 – 100 ppm	10.3125	10.3125 + 100 ppm	GBd	-
Total jitter	TJ	-	-	1.0	UI p-p	1, 2
Random jitter	RJ	-	-	0.13	UI p-p	1
Sinusoidal jitter, maximum	s _{J-max}	-	-	0.115	UI p-p	1
Duty cycle distortion	D _{CD}	-	-	0.035	UI p-p	1

Notes:

- 1. The AC specifications do not include Refclk jitter.
- 2. The total applied Jitter Tj = ISI + Rj + DCD + Sj-max, where ISI is jitter due to frequency dependent loss.
- 3. TX equalization and amplitude tuning is through software for performance optimization, as in NXP provided SDKs.

3.23.14 XLAUI interface (XLAUI)

The XLAUI standard achieves 40 Gbps with four 10.3125 Gbps lanes.

3.23.14.1 XLAUI DC electrical characteristics

This table defines the XLAUI transmitter DC electrical characteristics. The parameters are specified at the transmitter compliance point per IEEE Std 802.3-2015.

Table 121. XLAUI transmitter DC electrical characteristics (SD_OVDD = 1.8V)1

Parameter	Symbol	Min	Тур	Max	Unit
Differential peak-to-peak output voltage	V _{TX-DIFF}			760.0	mV p- p
De-emphasis		4.4	-	7.0	dB
Differential resistance	Z _{TX-DIFF-DC}	80.0	100.0	120.0	Ω

Note:

1. For recommended operating conditions, see Recommended Operating Conditions.

Teledyne Confidential; Commercially Sensitive Business Data

This table defines the XLAUI receiver DC electrical characteristics. The parameters are specified per IEEE 802.3-2015.

Table 122. XLAUI receiver DC electrical characteristics (SD_SV_{DD}=0.9V)¹

Parameter	Symbol	Min	Тур	Max	Unit
Differential input voltage	V _{IN}	85.0		850.0	mV p- p
Differential receive input impedance	V _{IN}	80.0	100.0	120.0	Ohm

Note:

3.23.14.2 XLAUI AC timing characteristics

This table defines the XLAUltransmitter AC timing specifications. The parameters are specified per IEEE 802.3-2015. The AC timing specifications do not include RefClk jitter.

Table 123. XLAUI transmitter AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Deterministic jitter eye mask (far end)	J_D			0.17	UI p-p
Total jitter eye mask (far end)	J _T	-	-	0.32	UI p-p
Transmitter baud rate	T _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s

This table defines the XLAUIreceiver AC timing specifications. The parameters are specified per IEEE 802.3-2015. The AC timing specifications do not include RefClk jitter.

Table 124. XLAUI receiver AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit
Input AC common-mode voltage tolerance		20.0	-	-	RMS
Deterministic jitter tolerance	J_D	0.42			UI p-p
Total jitter tolerance	J _T	0.62	-		UI p-p
Bit error ratio	BER	-	10 -12	-	-
Receiver baud rate	R _{BAUD}	10.3125-100ppm	10.3125	10.3125+100ppm	Gb/s

Teledyne Confidential; Commercially Sensitive Business Data

^{1.} For recommended operating conditions, see Recommended Operating Conditions.

3.23.15 SerDes Recovered Clock Outputs

The RCLK[0:1] pins provide the recovered clocks from SerDes lanes running Ethernet protocols (SGMII 1G, XFI, USXGMII, CAUI-4, 50GAUI-2, 25G-AUI, and XLAUI) on SerDes 1 and SerDes 2.

3.23.15.1 SerDes 1 and 2 receive recovered clocks DC electrical characteristics

This table provides the DC electrical characteristics for the recovered clock output.

Table 125. RCLK DC electrical characteristics (OVDD = 1.8V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	-	V	2
Output low voltage (OV _{DD} = min, I_{OL} = 0.5 mA)	V _{OL}	-	0.4	V	2

Notes:

- 1. For recommended operating conditions, see Recommended Operating Conditions.
- The symbol OVDD represents the recommended operating voltage of the supply referenced in Recommended Operating Conditions.

3.23.15.2 SerDes 1 and 2 receive recovered clocks AC timing characteristics

This table provides the AC electrical characteristics of the recovered clock output.

Table 126. RCLK AC timing specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
RCLK frequency	f _{RCLK}	0.0	-	161.1328125	MHz	-
RCLK pulse width	t _{RCLKPW}	40.0	50.0	60.0	%	-
LP filter < 1 MHz	TJ _{pk-pk}	-	-	30	ps	1
RCLK peak-to-peak jitter	DJ _{pk-pk}	-	-	10	ps	

Note:

1. Values listed for RCLK peak-to-peak jitter represent the jitter generation limits without any input data jitter or input PLL reference clock jitter. It is recommended that system designers use RCLK with an external jitter cleaning PLL when intending to use RCLK as a reference clock for the system. Jitter calculations for such a system should include the quoted RCLK peak-to-peak jitter, the system's SerDes PLL reference clock jitter, and the system's receiver input data jitter. Determination of both the SerDes PLL reference clock peak-to-peak jitter and the receiver peak-to-peak input data jitter should include the use of a low pass filter with a bandwidth of 1 MHz with a roll off of at least 20 dB per decade.

4 HARDWARE DESIGN CONSIDERATIONS

4.1 Clock ranges

This table provides the clocking specifications for the processor core, coherency domain, platform, memory, and DCE.

Table 127. Processor, platform, and memory clocking specifications

Characteristic Maximum processor core frequency				Unit	Notes			
	1800 MHz		2000 MHz		2200 MHz			
	Min	Max	Min	Max	Min	Max		
Core cluster group PLL frequency	700	1800	700	2000	700	2200	MHz	
Core frequency	175	1800	175	2000	175	2200	MHz	1
Coherency Domain frequency	1000	1300	1000	1400	1000	1500	MHz	
Platform clock frequency	500	650	500	700	500	750	MHz	1
Memory bus clock frequency	650	1300	650	1450	650	1600	MHz	1, 2
Decompression/compression acceleration engine (DCE) frequency	300	400	300	450	300	450	MHz	

Notes:

- 1. **Caution:** The coherency domain clock to SYSCLK ratio and core to SYSCLK ratio settings must be chosen such that the resulting SYSCLK frequency, core frequency, coherency domain and platform clock frequency do not exceed their respective maximum or minimum operating frequencies.
- 2. The memory bus clock speed is half the DDR4 data rate.

4.2 Platform clock requirements for Ethernet

This table shows the minimum platform clock frequency required to run Ethernet at different speeds.

Table 128. Platform clocking restrictions

Ethernet Speed	Platform clock requirement
10G	516 MHz
25G	645 MHz
40G	261 MHz
50G	350 MHz
100G	652 MHz

4.3 Power supply design

For additional details on the power supply design, see the applicable chip design checklist.

4.3.1 Voltage ID (VID) controllable supply

To guarantee performance and power specifications, a specific method of selecting the optimum voltage-level must be implemented when the chip is used. As part of the chip's boot process, software must read the VID efuse values stored in the Fuse Status register (FUSESR) and then configure the external voltage regulator based on this information. This method requires a point of load voltage regulator for each chip.

Note:

During the power-on reset process, the fuse values are read and stored in the FUSESR. It is expected that the chip's boot code reads the FUSESR value very early in the boot sequence and updates the regulator accordingly.

The default voltage regulator setting that is safe for the system to boot is the recommended operating VDD at boot of 0.850 V. It is highly recommended to select a regulator with a Vout range of at least 0.7 V to 0.9 V, with a resolution of 12.5 mV or better, when implementing a VID solution.

The table below lists the valid VID efuse values that will be programmed at the factory for this chip.

Table 129. Fuse Status Register (DCFG_CCSR_FUSESR)

Binary value of DA_V / DA_ALT_V	V _{DD} voltage
00000	default (0.850 V)
00010	0.775 V
10000	0.800 V
10010	0.825 V
10100	0.850 V
All other values	Reserved

For additional information on VID, see the chip reference manual.

5 THERMAL

This table shows the thermal rating for the chip.

Table 130. Package thermal characteristics

Rating	Board	Symbol	Value	Unit	Notes
Junction to case thermal resistance		R _{OJC}	0.15	°C/W	1

Note:

1. Junction-to-Case thermal resistance is determined using an isothermal cold plate heat extraction through the top side of the package. Case temperature is the surface temperature at the package lid's geometric centre.

5.1 Recommended thermal model

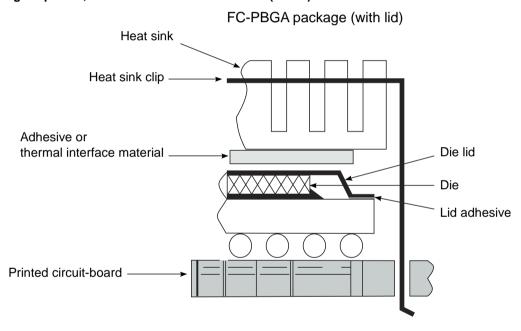
Information about Flotherm models of the package or thermal data not available in this document can be obtained from your local Teledyne e2v sales office.

Teledyne Confidential; Commercially Sensitive Business Data

5.2 Temperature diode

The chip has temperature diodes that can be used to monitor its temperature by using an external temperature monitoring device (such as NXP SA56004x).

The following are the specifications of the chip's on-board temperature diodes: Operating range: 14 - 240 µA


The ideality factor over temperature range $85C^{\circ}$ to $105C^{\circ}$, n = 1.022 ± 0.003 , with approximate error +/- $1.5 C^{\circ}$ and approximate error under +/- $3 C^{\circ}$ for temperature range $0 C^{\circ}$ to $85C^{\circ}$ and $105 C^{\circ}$ to $125C^{\circ}$.

5.3 Thermal management information

This section provides thermal management information for the flip-chip, plastic-ball, grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design-the heat sink, airflow, and thermal interface material.

The recommended attachment method to the heat sink is illustrated in Figure 63. The heat sink should be attached to the printed-circuit board with the spring force centered over the lid. This spring force should not exceed 47 pounds force (209 Newton).

Figure 63. Package exploded, cross-sectional view-FC-PBGA (w/ Lid)

The system board designer can choose between several types of heat sinks to place on the device. There are several commercially-available thermal interfaces to choose from in the industry. Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

5.3.1 Thermal interface materials

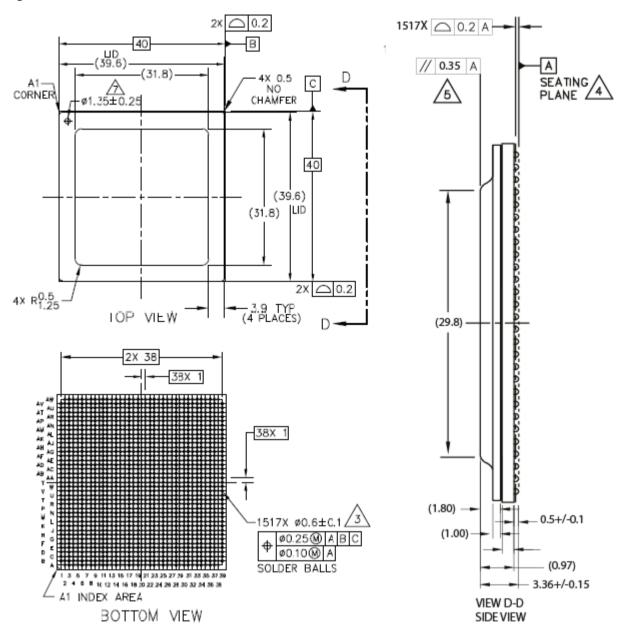
A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increasing contact pressure; this performance characteristic chart is generally provided by the thermal interface vendor. The recommended method of mounting heat sinks on the package is by means of a spring clip attachment to the printed-circuit board (see Figure 63).

The system board designer can choose among several types of commercially available thermal interface materials.

Teledyne Confidential; Commercially Sensitive Business Data

6 PACKAGE INFORMATION

6.1 Package parameters for the FC-PBGA


The package parameters are as provided in the following list.

- Package: #I/O 1517, 40 mm x 40 mm, lidded FCBGA
- Substrate: #3-2-3, stack up, 600µm core thickness
- Pitch: 1 mm
- Ball Diameter (typical): 0.6 mm
- Solder Balls: 96.5% Sn, 3% Ag, 0.5% Cu
- Solder Balls: 63% Sn, 37% Pb
- Module height: 3.21 mm (minimum), 3.36 mm (typical), 3.51 mm (maximum)
- Case outline number: 98ASA01023D

6.2 Mechanical dimensions of the FC-PBGA

This figure shows the mechanical dimensions and bottom surface nomenclature of the chip.

Figure 64. Mechanical dimensions of the FC-PBGA

Notes:

1. All dimensions are in millimeters.

Dimensions and tolerancing per ASME Y14.5M-1994.

Maximum solder ball diameter measured parallel to datum A. Raw ball diameter is 0.6mm

Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Parallelism measurement shall exclude any effect of mark on top surface of package.

All dimensions are symmetric across the package center lines, unless dimensioned otherwise.

Pin 1 thru hole shall be centered within foot area.

Teledyne Confidential; Commercially Sensitive Business Data

- 8. Deleted in Rev B
- 9. Lid overhang on the substrate is not allowed

G

7 <u>SECURITY FUSE PROCESSOR</u>

This chip implements the QorlQ platform's trust architecture, supporting capabilities such as secure boot. Use of the trust architecture featurs is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the trust architecture and SFP can be found in the chip reference manual.

To program SFP fuses, the user is required to supply 1.80 V to the TA_PROG_SFP pin per Power sequencing. TA_PROG_SFP should only be powered for the duration of the fuse programming cycle, with a per device limit of two fuse programming cycles. All other times TA_PROG_SFP should be connected to GND. The sequencing requirements for raising and lowering TA_PROG_SFP are shown in Figure 10. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Recommended Operating Conditions.

Note:

Users not implementing the QorlQ platform's trust architecture features should connect TA_PROG_SFP to GND.

8 ORDERING INFORMATION

Contact your local Teledyne e2v sales office or regional marketing team for order information.

8.1 Part numbering nomenclature

This table provides the Teledyne e2v Layerscape platform part numbering nomenclature.

Table 131. Part numbering nomenclature

Family	Performance Level	Number of cores	Derivatives	Temperature range	Options	Package Type	CPU Frequency, DDR Data Rate	Revision
LX(X) ² = 16FFC	2	08 = 8 12 = 12 16 = 16	0 = first	A = -40/105 F = -40/125 M = -55/125	C = SEC, CANFD enabled E = SEC enabled, CAN 2.0b enabled (no CAN-FD support) N = SEC disabled, CAN 2.0b enabled (no CAN-FD support)	7 = 40x40mm FC PBGA pb-free C4/C5 3 = 40x40mm FC PBGA C4 = pb-free, C5 = SnPb (63/37)	1826 = 1800 MHz, 2600 MT/s 2029 = 2000MHz, 2900 MT/s 2232 = 2200 MHz, 3200 MT/s	B = Rev 2.0

Notes:

- 1. For availability of the different versions, contact your local Teledyne e2v sales office.
- 2. The letter X in the part number designates a "Prototype" product that has not been qualified by e2v. Reliability of a LXX part number is not guaranteed and such part-number shall not be used in Flight Hardware. Product changes may still occur while shipping prototypes.

9 REVISION HISTORY

This table summarizes revisions to this document.

Issue	Date	Comments
DS 60S 222625(A)	11/22	Initial revision
DS 60S 222625(B)	03/23	Added an additional line in Section 6.1.
DS 60S 222625(C)	08/24	Added table in section 6
		Modification TA = 125°C to TJ = 125°C

Teledyne Confidential; Commercially Sensitive Business Data

Table of contents

i introduct	lon	
1.1 De	vice selection	4
2 Pin assig	gnments	4
2.1 151	17 ball layout diagrams	4
2.2 Pin	out list	10
2.2.1	DDR1 pins	69
2.2.2	DDR2 pins	69
2.2.3	I2C1 pins	69
2.2.4	I2C2 pins	70
2.2.5	I2C3 pins	70
2.2.6	I2C4 pins	70
2.2.7	I2C5 pins	70
2.2.8	I2C6 pins	70
2.2.9	I2C7 pins	70
2.2.10	I2C8 pins	70
2.2.11	XSPI1 pins	70
2.2.12	eSDHC1 pins	70
2.2.13	eSDHC2 pins	70
2.2.14	UART pins	70
2.2.15	Interrupt controller pins	70
2.2.16	Trust pins	70
2.2.17	System control pins	70
2.2.18	Clocking pins	70
2.2.19	Debug pins	71
2.2.20	DFT pins	71
2.2.21	JTAG pins	71
2.2.22	Analog pins	71
2.2.23	SerDes1 pins	71
2.2.24	SerDes2 pins	71
2.2.25	SerDes3 pins	71
2.2.26	USB PHY pins	71
2.2.27	EC1 pins	71
2.2.28	EC2 pins	71
2.2.29	GPIO pins	71
2.2.30	FlexTimer pins	71
2.2.31	CAN pins	71
2.2.32	Power-on-reset configuration pins	71
2.2.33	SPI1 pins	71
2.2.34	SPI2 pins	72

Teledyne Confidential; Commercially Sensitive Business Data

2.2.3	35 SPI3 pins	72
2.2.3	36 IEEE 1588 pins	72
2.2.3	Power and ground pins	72
2.2.3	No connect pins	72
3 Flecti	rical characteristics	72
	Overall DC electrical characteristics	
3.1.1		
3.1.2	-	
3.1.3		
3.2	General AC timing	
	Power sequencing	
3.4	Power-down requirements	79
3.5	Power-on ramp rate	79
3.6	Power characteristics	80
3.7	Input clocks	82
3.7.1	USB reference clock specifications	82
3.7.2	2 Gigabit Ethernet reference clock timing	82
3.7.3	B DDR clock (DDRCLK)	83
3.7.4	Differential system clock (DIFF_SYSCLK_P/DIFF_SYSCLK_N) timing specifications	84
3.7.5	5 Other input clocks	85
3.8	Reset initialization timing specifications	85
3.9	Battery-backed security monitor and tamper detect	86
3.9.1	Battery-backed security monitor and tamper detect DC electrical characteristics	86
3.9.2	2 Battery-backed security monitor AC timing specifications	87
3.10	DDR4 SDRAM controller	87
3.10	.1 DDR4 SDRAM controller DC electrical characteristics	87
3.10	.2 DDR4 SDRAM controller AC timing specifications	87
3.11	Universal asynchronous receiver/transmitter (UART)	92
3.11	.1 UART DC electrical characteristics	92
3.11	.2 UART AC timing specifications	93
3.12	Enhanced secure digital host controller (eSDHC)	93
3.12	.1 eSDHC DC electrical characteristics	93
3.12	.2 eSDHC AC timing specifications	94
3.13	Ethernet interface (EMI, RGMII, and IEEE Std 1588™)	108
3.13	.1 Ethernet management interface (EMI)	108
3.13	.2 Reduced media-independent interface (RGMII)	110
3.13	.3 IEEE 1588	113
3.14	General purpose input/output (GPIO)	115
3.14	.1 GPIO DC electrical characteristics	115
3.14	.2 GPIO AC timing specifications	116
3.15	Flextimer interface	116
3 15	1 Electimer DC electrical characteristics	116

Teledyne Confidential; Commercially Sensitive Business Data

3.15.2	Flextimer AC timing specifications	117
3.16 Ge	eneric interrupt controller (GIC)	117
3.16.1	GIC DC electrical characteristics	117
3.16.2	GIC AC timing specifications	118
3.17 120	C	118
3.17.1	I2C DC electrical characteristics	118
3.17.2	I2C AC timing specifications	119
3.18 JT	AG	120
3.18.1	JTAG DC electrical characteristics	120
3.18.2	JTAG AC timing specifications	
3.19 Fle	ex serial peripheral interface (FlexSPI)	123
3.19.1	FlexSPI DC electrical characteristics	123
3.19.2	FlexSPI AC timing specifications	124
3.20 Se	erial peripheral interface (SPI)	128
3.20.1	SPI DC electrical characteristics	128
3.20.2	SPI AC timing specifications	129
3.21 Un	niversal serial bus 3.0 (USB)	
3.21.1	USB 3.0 DC electrical characteristics	
3.21.2	USB 3.0 AC timing specifications	132
3.22 Cc	ontroller Automatic Network interface (CAN)	
3.22.1	CAN DC electrical characteristics	
3.22.2		
`	gh-speed serial interfaces (HSSI)	
3.23.1	Signal terms definitions	
3.23.2	SerDes reference clocks	
3.23.3	SerDes transmitter and receiver reference circuits	142
3.23.4	PCI Express	143
3.23.5	Serial ATA (SATA)	153
3.23.6	SGMII interface	158
3.23.7	XFI	163
3.23.8	SFI	166
3.23.9	SFP+ direct attach copper	170
) 1000Base-KX	
3.23.11	1 10GBase-KR	172
3.23.12	2 CAUI-4, 50GAUI-2, and 25G-AUI interface	174
3.23.13	3 USXGMII interface (USXGMII)	176
3.23.14	4 XLAUI interface (XLAUI)	177
3.23.15	5 SerDes Recovered Clock Outputs	179
4 Hardwa	re design considerations	180
4.1 Cld	ock ranges	180
12 PI	atform clock requirements for Ethernet	180

Teledyne Confidential; Commercially Sensitive Business Data

4.3	Power supply design	. 181
4.3	.1 Voltage ID (VID) controllable supply	. 181
	rmal	
5.1	Recommended thermal model	. 181
5.2	Temperature diode	. 182
	Thermal management information	
5.3	.1 Thermalinterface materials	. 182
6 Pacl	kage information	. 183
	Package parameters for the FC-PBGA	
6.2	Mechanical dimensions of the FC-PBGA	. 183
7 Sec	urity fuse processor	. 185
	ering information	
8.1	Part numbering nomenclature	. 185
9 Revi	ision history	. 185

IMPORTANT NOTICE

Teledyne e2v provides technical and reliability data, including datasheets, design resources, application and other recommendations ("Resources") "as is" at the date of its disclosure. All Teledyne e2v Resources are subject to change without notice to improve reliability, function or design, or otherwise.

These Resources are intended for skilled developers designing with Teledyne e2v products. You are solely responsible for a selecting the appropriate Teledyne e2v products for your application, b. designing, validating and testing your application, and c. ensuring your application meets applicable standards, and any other safety, security, or other requirements.

Teledyne e2v makes no warranty, representation or guarantee regarding the suitability of these Resources for any particular purpose, or the continuing production of any of its products. Teledyne e2v grants you permission to use these Resources only for the development of an application that uses the Teledyne e2v products described in the Resource. Other reproduction and display of these Resources are not permitted. No license, express or implied, to Teledyne e2vintellectual property right or to any third party intellectual property right is granted by this document or by the conduct of Teledyne e2v.

To the maximum extent permitted by law, Teledyne e2v disclaims (i) any and all liability for any errors, inaccuracies or incompleteness contained in these Resources, or arising out of the application of or use of these Resources, and (ii) any and all express or implied warranties, including those of merchantability, fitness for a particular purpose or non-infringement of intellectual property rights. You shall fully indemnify Teledyne e2v against, any claims, damages, costs, losses, and liabilities arising out of your application of or use of these Resources.

Teledyne e2v's acceptance of any products purchase orders is expressly conditioned upon your assent to Teledyne e2v's General Terms and Conditions of Sale which are stated in any Teledyne e2v's offer and can be found at www.teledyne-e2v.com/about-us/terms-and-conditions/.

The provision of these Resources by Teledyne e2v does not expand or otherwise alter Teledyne e2v's applicable warranties or warranty disclaimers for Teledyne e2v products.

Mailing Address: Teledyne e2v Semiconductors SAS, Avenue de Rochepleine, 38120 Saint Egrève, France.

Telephone: +33 4 76 58 30 00 e-mail: hotline-std@teledyne.com

Copyright © 2024, Teledyne e2v Semiconductors SAS

Teledyne Confidential; Commercially Sensitive Business Data