

EV10DS130AZP EV10DS130BZP Low Power 10-bit 3 Gsps Digital to Analog Converter with 4/2:1 Multiplexer

Datasheet DS 60S 223704

Main Features

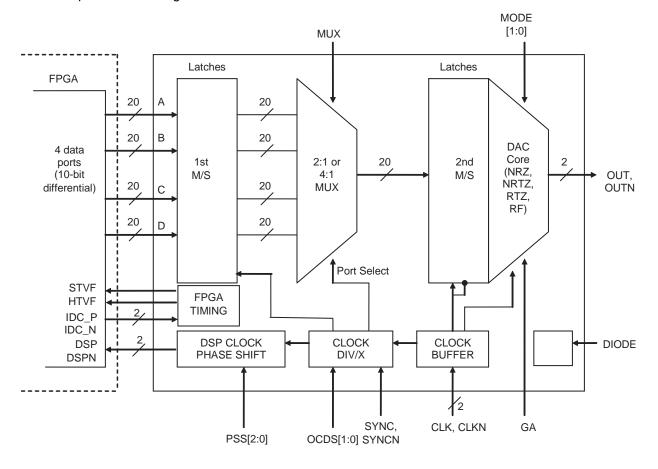
- 10-bit Resolution
- 3 GSps Guaranteed Conversion Rate
- · 7 GHz Analog Output Bandwidth
- 4:1 or 2:1 Integrated Parallel MUX (Selectable)
- Selectable Output Modes for Performance Optimization: Return to Zero, Non Return to Zero, Narrow Return to Zero, RF
- Low Latency Time: 3.5 Clock Cycles
- 1.4 Watt Power Dissipation in MUX 4:1 Mode
- Functions
 - Selectable MUX Ratio 4:1 (Full Speed), 2:1 (Half Speed)
 - Triple Majority Voting
 - User-friendly Functions:
 - Gain Adjustment
 - Input Data Check Bit (FPGA Timing Check)
 - Setup Time and Hold Time Violation Flags (STVF, HTVF)
 - Clock Phase Shift Select for Synchronization with DSP (PSS[2:0])
 - Output Clock Division Selection (Possibility to Change the Division Ratio of the DSP Clock)
 - Input Under Clocking Mode
 - Diode for Die junction Temperature Monitoring
- LVDS Differential Data Input and DSP Clock Output
- Analog Output Swing: 1V_{pp} Differential (100Ω Differential Impedance)
- External Reset for Synchronization of Multiple MuxDACs
- Power Supplies: 3.3 V (Digital), 3.3V & 5.0V (Analog)
- FpBGA Package (15 × 15 mm Body Size, 1 mm Pitch)
- MSL 3 (Moisture Sensitivity Level)

Performances

Single Tone:

- Performances Characterized for Fout from 100 MHz to 4500 MHz and from 2 GSps to 3.2 GSps.
- Performance Industrially Screened Over 3 Nyquist Zones at 3 GSps for Selected Fout.

Step Response


· Full Scale Rise /Fall Time 50 ps

Applications

- Direct Digital Synthesis for Broadband Applications (L-S and Lower C Band)
- Automatic Test Equipment (ATE)
- Arbitrary Waveform Generators
- · Radar Waveform Signal Synthesis
- DOCSIS V3.0 Systems

1. Block Diagram

Figure 1-1. Simplified Block Diagram

2. Description

The EV10DS130A/B is a 10-bit 3 GSps DAC with an integrated 4:1 or 2:1 multiplexer, allowing easy interface with standard LVDS FPGAs thanks to user friendly features as OCDS, PSS.

It embeds different output modes (RTZ, NRZ, narrow RTZ, RF) that allows performance optimizations depending on the working Nyquist zone.

The Noise Power Ratio (NPR) performance, over more than 900 MHz instantaneous bandwidth, and the high linearity (SFDR, IMD) over full 1st Nyquist zone at 3 GSps (NRZ feature), make this product well suited for high-end applications such as arbitrary waveform generators and broadband DDS systems.

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3-1. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Positive Analog supply voltage	V _{CCA5}	6.0	V
Positive Analog supply voltage	V _{CCA3}	4.0	V
Positive Digital supply voltage	V _{CCD}	4.0	V
Digital inputs (on each single-ended input) and IDC, SYNC, signal Port P = A, B, C, D $V_{IL} \\ V_{IH} \\ Digital Input maximum Differential mode swing$	[P0P9], [P0N P9N] IDC_P, IDC_N SYNC, SYNCN	GND-0.3 V _{CCA3} 2.0	V V V _{pp}
Master clock input (on each single-ended input) $V_{\text{IL}} \\ V_{\text{IH}} \\ \\ \text{Master Clock Maximum Differential mode swing}$	CLK, CLKN	1.5 3.5 2.5	V V V _{pp}
Control functions inputs $V_{\rm IL}$ $V_{\rm IH}$	MUX, MODE[01], PSS[02], OCDS[01]	-0.4V V _{CCD} + 0.4	V V
Gain Adjustment function	GA	-0.3V, V _{CCA3} + 0.3	V
Maximum Junction Temperature	Tj	170	°C
Storage Temperature	Tstg	-65 to 150	°C
Electrostatic discharge immunity ESD Classification	ESD HBM	1000 Class 1B	V

Notes: 1. Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability.

- 2. All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.
- 3. Maximum ratings enable active inputs with DAC powered off.
- 4. Maximum ratings enable floating inputs with DAC powered on.
- 5. DSP clock and STVF, HTVF output buffers must not be shorted to ground nor positive power supply.

3.2 Recommended Conditions of Use

Table 3-2. Recommended Conditions of Use

Parameter	Symbol	Comments	Recommended Value	Unit	Note
Positive analog supply voltage	V _{CCA5}		5.0	V	(2)(4)
Positive analog supply voltage	V _{CCA3}		3.3	V	(1)(2)(4)
Positive digital supply voltage	V _{CCD}		3.3	V	(2)(4)
Digital inputs (on each single-ended input) and IDC, SYNC, signal Port P = A, B, C, D V _{IL} V _{IH} Differential mode swing	[P0P9], [P0N P9N] IDC_P, IDC_N SYNC, SYNCN		1.075 1.425 700	V V mV _{pp}	(3)
Master clock input power level (Differential mode)	P _{CLK}		3	dBm	(3)
Control functions inputs	MUX, OCDS, PSS, MODE, PSS	V _{IL} V _{IH}	0 V _{CCD}	V V	
Gain Adjustment function	GA	Range	0 V _{CCA3}	V	
Operating Temperature Range	T _c T _j	Commercial "C" grade Industrial "V" grade	$T_c > 0^{\circ}C / T_j < 90^{\circ}C$ $T_c > -40^{\circ}C / T_j < 110^{\circ}C$	°C	

Notes: 1. For low temperature it is recommended to operate at maximum analog supplies (V_{CCA3}) level.

- The rise time of any power supplies (Vccd, Vcca5, Vcca3) shall be <10ms.
 For EV10DS130A, in order to obtain the guaranteed performances and functionality, the following rules shall be followed when powering the devices (See Section 7.9 "Power Up Sequencing" on page 41)
 For EV10DS130B, no specific power up sequence nor power supplies relationships are required.
- 3. Analog output is in differential. Single-ended operation is not recommended. Guaranteed performance is only in differential configuration.
- 4. No power-down sequencing is required.

3.3 Electrical Characteristics

Values in the tables below are based on our conditions of measurement in room temperature for typical power supply ($V_{CCA5} = 5.0V$, $V_{CCA3} = 3.3V$, $V_{CCD} = 3.3V$), typical swing and in MUX4:1 otherwise specified.

Table 3-3. Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test Level ⁽²⁾
RESOLUTION			10		bit		
POWER REQUIREMENTS							
Power Supply voltage							
- Analog - Analog - Digital	V _{CCA5} V _{CCA3} V _{CCD}	4.75 3.15 3.15	5 3.3 3.3	5.25 3.45 3.45	V V	(7)(8)	1
Power Supply current (4:1 MUX)							
- Analog - Analog - Digital	I _{CCA5} I _{CCA3} I _{CCD}		84 106 187	90 122 205	mA mA mA		1
Power Supply current (2:1 MUX)							
- Analog - Analog - Digital	I _{CCA5} I _{CCA3} I _{CCD}		84 106 160	90 122 177	mA mA mA		1
Power dissipation (4:1 MUX)	P _D		1.4	1.6	W		1
Power dissipation (2:1 DMUX)	P _D		1.3	1.5	W		1
DIGITAL DATA INPUTS, SYNC and IDC INPUTS							
Logic compatibility			LVDS				
Digital input voltages:							
Differential input voltageCommon mode	V _{ID} V _{ICM}	100	350 1.25	500	mV _p		1 1
Input capacitance from each single input to ground				2	pF		5
Differential Input resistance		80	100	120	Ω		1
CLOCK INPUTS							
Input voltages (Differential operation swing)		0.56	1	2.24	V_{pp}	(1)	4
Power level (Differential operation)		-4	1	8	dBm		4
Common mode		2.4	2.5	2.6	V		
Input capacitance from each single input to ground (at die level)				2	pF		5
Differential Input resistance:		80	100	120	Ω		1
DSP CLOCK OUTPUT							
Logic compatibility			LVDS				
Digital output voltages:							
- Differential output voltage - Common mode	V _{OD} V _{OCM}	240	350 1.3	450	mV _p		1

EV10DS130AZP/EV10DS130BZP

 Table 3-3.
 Electrical Characteristics (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test Level ⁽²⁾
ANALOG OUTPUT							
Full-scale Differential output voltage (100 Ω differentially terminated)		0.92	1	1.08	V_{pp}		1
Full-scale output power (differential output)		0.25	1	1.64	dBm		1
Single-ended mid-scale output voltage (50 Ω terminated)			V _{CCA5} - 0.43		V	(4)	
Output capacitance			1.5		pF		5
Output internal differential resistance		90	100	110	Ω		1
Output VSWR (using e2v evaluation board) 1.5 GHz 3 GHz 4.5 GHz			1.17 1.54 1.64				4
Output bandwidth			7		GHz		4
FUNCTIONS							
Digital functions: MODE, OCDS, PSS, MUX							
- Logic 0 - Logic 1	V _{IL} V _{IH} I _{IN}	1.6	0 V _{CCD}	0.8 150	V V µA	(6)	1
Gain Adjustment function	GA		0 V _{CCA3}				1
Digital output function (HTVF, STVF)							
Logic 0 Logic 1	V _{OL} V _{OH} I _O	2.3		0.8 80	V V μA	(5)	1
DC ACCURACY							
Differential Non-Linearity	DNL+		0.3	0.8	LSB		1
Differential Non-Linearity	DNL-	-0.8	-0.3		LSB		1
Integral Non-Linearity	INL+		0.25	1.2	LSB		1
Integral Non-Linearity	INL-	-1.2	-0.25		LSB		1
DC gain:							
 Initial gain error DC gain adjustment DC gain sensitivity to power supplies DC gain drift over temperature 		-8	0 ±11 ±2	+8	% % %	(3)	1 1 1 4

Notes: 1. For use in higher Nyquist zone, it is recommended to use higher power clock within the limit.

- 2. See Section 3.6 on page 13 for explanation of test levels.
- 3. Initial gain error corresponds to the deviation of the DC gain center value from unity gain. The DC gain adjustment (GA function) ensures that the initial gain deviation can be cancelled.
 The DC gain sensitivity to power supplies is given according the rule:

GainSensVsSupply = |Gain@VccMin - Gain@VccMax| / Gain@Vccnom

- 4. Single-ended operation is not recommended, this line is given for better understanding of what is output by the DAC.
- 5. In order to modify the V_{OL}/V_{OH} value, potential divider could be used.

- 6. Sink or source.
- Only for EV10DS130A dependency between power supplies:
 Within the applicable power supplies range, the following relationship shall always be satisfied V_{CCA3} ≥ V_{CCD}, taking into account AGND and DGND planes are merged and power supplies accuracy.
- 8. Please refer Section 7.9 "Power Up Sequencing" on page 41.

3.4 AC Electrical Characteristics

Values in the tables below are based on our conditions of measurement in room temperature for typical power supply ($V_{CCA5} = 5.0V$, $V_{CCA3} = 3.3V$, $V_{CCD} = 3.3V$), typical swing and in MUX4:1 otherwise specified.

Table 3-4. AC Electrical Characteristics NRZ Mode (First Nyquist Zone)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Single-tone Spurious Free Dynamic Range First Nyquist MUX 4:1							
Fs = 3 GSps @ Fout = 100 MHz 0 dBFS	SFDR	57	66		dBc		1
Fs = 3 GSps @ Fout = 100 MHz -3 dBFS			67				4
Highest spur level First Nyquist MUX 4:1							
Fs = 3 GSps @ Fout = 100 MHz 0 dBFS			-66	-56	dBm		1
Fs = 3 GSps @ Fout = 100 MHz -3 dBFS			-72				4
SFDR sensitivity & high spur level variation over temperature			±2		dB		4
SFDR sensitivity & high spur level variation over power supplies			±2		dB		4
Signal independent Spur (clock-related spur)							
Fc/2			-82		dBm		4
Fc/4			-85		dBm		4
Noise Power Ratio -14 dBFS peak to rms loading factor Fs = 3 GSps 20 MHz to 900 MHz broadband pattern 25 MHz notch centered on 450 MHz	NPR		45		dB	(2)	4
Equivalent ENOB Computed from NPR figure at 3 GSps	ENOB		9.0		Bit		4
Signal to Noise Ratio Computed from NPR figure at 3 GSps	SNR		56		dB		4
DAC self noise density at code 0 or 4095			-155		dBm/Hz		4

Notes: 1. See Section 3.6 on page 13 for explanation of test levels.

2. Figures in tables are derived from industrial screening; for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

EV10DS130AZP/EV10DS130BZP

 Table 3-5.
 AC Electrical Characteristics NRTZ Mode (First & Second Nyquist Zone)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Single-tone Spurious Free Dynamic Range							
MUX4:1							
Fs = 3 GSps @ Fout = 100 MHz 0 dBFS			68				4
Fs = 3 GSps @ Fout = 700 MHz 0 dBFS			62				4
Fs = 3 GSps @ Fout = 1800 MHz 0 dBFS	SFDR	52	60		dBc		1
Fs = 3 GSps @ Fout = 700 MHz -3 dBFS			66				4
MUX2:1							
Fs = 1.5 GSps @ Fout = 700 MHz 0 dBFS		52	60				1
Highest spur level							
MUX4:1							
Fs = 3 GSps @ Fout = 100 MHz 0 dBFS			-70				4
Fs = 3 GSps @ Fout = 700 MHz 0 dBFS			-64 05				4
Fs = 3 GSps @ Fout = 1800 MHz 0 dBFS			-65	– 57	dBm		1
Fs = 3 GSps @ Fout = 700 MHz -3 dBFS			-70				4
MUX2:1							
Fs = 1.5 GSps @ Fout = 700 MHz 0 dBFS			-64	-54			1
SFDR sensitivity & high spur level variation over temperature			±2		dB		4
SFDR sensitivity & high spur level variation over power supplies			±2		dB		4
Signal independent Spur (clock-related spur)							
Fc			-29		dBm		4
Fc/2			-80		dBm		4
Fc/4			< -80		dBm		4
DAC self noise density at code 0 or 4095			-149	-140	dBm/Hz		1
Noise Power Ratio							
-14 dBFS peak to rms loading factor							
Fs = 3 GSps	NPR	45	46		dB	(2)	1
20 MHz to 900 MHz broadband pattern, 25 MHz notch centered on 450 MHz							
Equivalent ENOB					_	(0)	
Computed from NPR figure at 3 GSps	ENOB	9.0	9.2		Bit	(2)	1
Signal to Noise Ratio	SNR	56	57		dB	(2)	1
Computed from NPR figure at 3 GSps	ONIX	50	57		GD		1

Notes: 1. See Section 3.6 on page 13 for explanation of test levels.

^{2.} Figures in tables are derived from industrial screening; for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

Table 3-6. AC Electrical Characteristics RTZ Mode (Second Nyquist Zone)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Single-tone Spurious Free Dynamic Range MUX4:1 Fs = 3 GSps @ Fout = 1600 MHz 0 dBFS Fs = 3 GSps @ Fout = 2900 MHz 0 dBFS	SFDR	49	58 56		dBc		1 4
Highest spur level MUX4:1 Fs = 3 GSps @ Fout = 1600 MHz 0 dBFS Fs = 3 GSps @ Fout = 2900 MHz 0 dBFS			-55 -63	-57	dBm		1 4
SFDR sensitivity & high spur level variation over temperature			±2		dB		4
SFDR sensitivity & high spur level variation over power supplies			±2		dB		4
Signal independent Spur (clock-related spur)							
Fc			-25		dBm		4
Fc/2			-80		dBm		4
Fc/4			< -80		dBm		4
DAC self noise density at code 0 or 4095			-143		dBm/Hz		4
Noise Power Ratio -14 dBFS peak to rms loading factor Fs = 3 GSps 1520 MHz to 2200 MHz broadband pattern, 25 MHz notch centered on 1850 MHz	NPR	38	40		dB		1
Equivalent ENOB Computed from NPR figure at 3 GSps	ENOB	7.8	8.2		Bit		1
Signal to Noise Ratio Computed from NPR figure at 3 GSps	SNR	49	51		dB		1

Note: 1. See Section 3.6 on page 13 for explanation of test levels.

EV10DS130AZP/EV10DS130BZP

 Table 3-7.
 AC Electrical Characteristics RF Mode (Second and Third Nyquist Zones)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Single-tone Spurious Free Dynamic Range 2 nd Nyquist Fs = 3 GSps @ Fout = 1600 MHz 0 dBFS Fs = 3 GSps @ Fout = 2900 MHz 0 dBFS	SFDR		52 58		dBc		4 4
3 rd Nyquist Fs = 3 GSps @ Fout = 3800 MHz 0 dBFS Fs = 3 GSps @ Fout = 4400 MHz 0 dBFS		45	53 54				4
Highest spur level 2 nd Nyquist Fs = 3 GSps @ Fout =1600 MHz 0 dBFS Fs = 3 GSps @ Fout = 2900 MHz 0 dBFS			-58 -58		dBm		4 4
3 rd Nyquist Fs = 3 GSps @ Fout = 4400 MHz 0 dBFS			-62	– 56			1
SFDR sensitivity & high spur level variation over temperature			±2		dB		4
SFDR sensitivity & high spur level variation over power supplies			±2		dB		4
Signal independent Spur (clock-related spur)							
Fc			-28		dBm		4
Fc/2			-80		dBm		4
Fc/4			< -80		dBm		4
DAC self noise density at code 0 or 4095			-141		dBm/Hz		4
Noise Power Ratio (2 nd Nyquist) –14 dBFS peak to rms loading factor Fs = 3 GSps 1520 MHz to 2200 MHz broadband pattern, 25 MHz notch centered on 1850 MHz	NPR		38		dB	(2)	4
Equivalent ENOB Computed from NPR figure at 3 GSps	ENOB		7.8		Bit	(2)	4
Signal to Noise Ratio Computed from NPR figure at 3 GSps	SNR		49		dB	(2)	4
Noise Power Ratio -14 dBFS peak to rms loading factor Fs = 3 GSps 2200 MHz to 2880 MHz broadband pattern, 25 MHz notch centered on 2550 MHz	NPR		38		dB	(2)	4
Equivalent ENOB Computed from NPR figure at 3 GSps	ENOB		7.8		Bit	(2)	4
Signal to Noise Ratio Computed from NPR figure at 3 GSps	SNR		49		dB	(2)	4

Table 3-7. AC Electrical Characteristics RF Mode (Second and Third Nyquist Zones) (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Noise Power Ratio -14 dBFS peak to rms loading factor Fs = 3 GSps 3050 MHz to 3700 MHz broadband pattern, 25 MHz notch centered on 3375 MHz	NPR	36	38		dB	(2)	1
Equivalent ENOB Computed from NPR figure at 3 GSps	ENOB	7.5	7.8		Bit	(2)	1
Signal to Noise Ratio Computed from NPR figure at 3 GSps	SNR	47	49		dB	(2)	1

- Notes: 1. See Section 3.6 on page 13 for explanation of test levels.
 - 2. Figures in tables are derived from industrial screening without any correction to take in account the balun effect, but for practical reasons (necessity to cover also 2nd and 3rd Nyquist Zones) the balun used for industrial test is not optimum for first Nyquist performances, and results when Fout or folded low order hamonics are between DC to 400 MHz are very pessimistic.

3.5 **Timing Characteristics and Switching Performances**

Table 3-8. Timing Characteristics and Switching Performances

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
SWITCHING PERFORMANCE AND CHARACTE	RISTICS						
Operating clock frequency							
4:1 MUX mode		300		3000	MHz		4
2:1 MUX mode		300		1500			
TIMING CHARACTERISTICS							
Analog output rise/fall time	T _{OR} T _{OF}			60	ps	(2)	4
Data Tsetup (Fc = 3 Gsps)		250			ps	(3)	4
Data Thold (Fc = 3 Gsps)		100			ps	(3)	4
Max Input data rate (Mux 4:1)		75		750	MSps		4
Max Input data rate (Mux 2:1)		150		750	MSps		4
Master clock input jitter				100	fs rms	(4)	5
DSP clock phase tuning steps			0.5		Clock period		5
Master clock to DSP, DSPN delay	TDSP		1.6		ns		4
SYNC forbidden area lower bound (Fc = 3 Gsps)	T ₁		350		ps	(5)(6)	4
SYNC forbidden area upper bound (Fc = 3 Gsps)	T ₂		330		ps	(5)(6)	4
SYNC to DSP, DSPN							
MUX 2:1			880		ps		4
MUX4:1			1600				

Table 3-8. Timing Characteristics and Switching Performances (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Note	Test level ⁽¹⁾
Data Pipeline Delay							
MUX4:1	TPD		3.5		Clock period		4
MUX2:1			3.5				
Data Output Delay	TOD		160		ps		4

Notes:

- 1. See Section 3.6 on page 13 for explanation of the test level.
- 2. Analog output rise/fall time measured from 20% to 80% of a full scale jump, after probe de-embedding.
- 3. Exclusive of period (pp) jitter on Data. Setup and hold time for DATA at input relative to DSP clock at output of the component, at PSS = 000; also applicable for IDC signal.
- 4. Master clock input jitter defined over 5 GHz bandwidth.
- 5. The SYNC signal is captured on the falling edge of the master clock and is active high. Refer to Figure 3-3.
- 6. For EV10DS130A, please refer to erratasheet 1125

Figure 3-1. Timing Diagram for 4:1 MUX Principle of Operation OCDS[00]

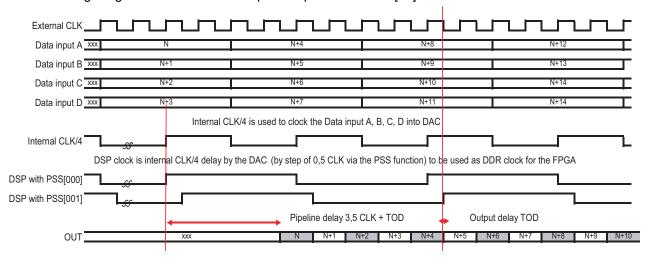


Figure 3-2. Timing Diagram for 2:1 MUX Principle of Operation OCDS[00]

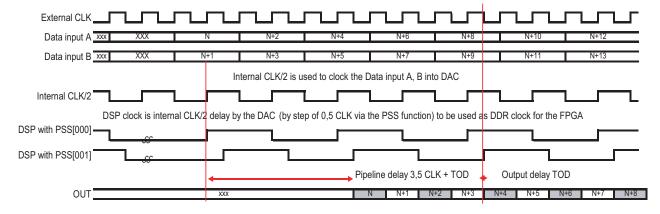
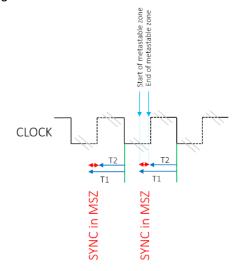



Figure 3-3. SYNC Timing Diagram

Please refer to Section 5.8 "Synchronization Functions for Multi-DAC Operation" on page 26.

3.6 Explanation of Test Levels

1	100% production tested at +25°C ⁽¹⁾
2	100% production tested at +25°C ⁽¹⁾ , and sample tested at specified temperatures.
3	Sample tested only at specified temperatures
4	Parameter is guaranteed by design and/or characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter value is only guaranteed by design
6	100% production tested over specified temperature range (for Space/Mil grade ⁽²⁾)

Only MIN and MAX values are guaranteed.

Notes: 1. Unless otherwise specified.

2. If applicable, please refer to "Ordering Information"

3.7 Digital Input Coding Table

Table 3-9.Coding Table

Digital output msblsb	Differential analog output
000000000	–500 mV
010000000	–250 mV
0110000000	−125 mV
100000000	0 mV
101000000	+125 mV
1100000000	+250 mV
111111111	+500 mV

4. Definition of Terms

Abbreviation	Term	Definition	
(Fs max)	Maximum conversion Frequency	Maximum conversion frequency	
(Fs min)	Minimum conversion frequency	Minimum conversion Frequency	
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, set at Full Scale, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dB (i.e., related to converter 0 dB Full Scale), or in dBc (i.e, related to input signal level).	
(HSL)	High Spur Level	Power of highest spurious spectral component expressed in dBm.	
(ENOB)	Effective Number Of Bits	ENOB is determinated from NPR measurement with the formula:	
(SNR)	Signal to noise ratio	SNR is determinated from NPR measurement with the formula: ${\sf SNR}_{[dB]} = {\sf NPR}_{[dB]} + {\sf ILF}_{[dB]} {\sf I} - 3$ Where LF "Loading factor" is the ratio between the Gaussian noise standard deviation versus amplitude full scale.	
(DNL)	Differential non linearity	The Differential Non Linearity for an given code i is the difference between the measured step size of code i and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing point and that the transfer function is monotonic.	
(INL)	Integral non linearity	The Integral Non Linearity for a given code i is the difference between the measured voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all INL (i)	
(TPD/TOD)	Output delay	The analog output propagation delay measured between the rising edge of the differential CLK, CLKN clock input (zero crossing point) and the zero crossing point of a full-scale analog output voltage step. TPD corresponds to the pipeline delay plus an internal propagation delay (TOD) including package access propagation delay and internal (on-chip) delays such as clock input buffers and DAC conversion time.	
(NPR)	Noise Power Ratio	The NPR is measured to characterize the DAC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise pattern at the input to the DAC under test, the Noise Power Ratio is defined as the ratio of the average noise measured on the shoulder of the notch and inside the notch on the same integration bandwidth.	
(VSWR)	Voltage Standing Wave Ratio	The VSWR corresponds to the insertion loss linked to power reflection. For example a VSWR of 1:2 corresponds to a 20dB return loss (ie. 99% power transmitted and 1% reflected).	
(IUCM)	Input under clocking mode	The IUCM principle is to apply a selectable division ratio between DAC section clock and the MUX section clock.	
(PSS)	Phase Shift Select	The Phase Shift Select function allow to tune the phase of the DSPclock.	
(OCDS)	Output Clock Division Selectt	It allows to divide the DSPclock frequency by the OCDS coded value factor	
(NRZ)	Non Return to Zero mode	Non Return to Zero mode on analog output	
(RF)	Radio Frequency mode	RF mode on analog output	
(RTZ)	Return to zero	Return to zero mode on analog output	
(NRTZ)	Narrow return to zero	Narrow return to zero mode on analog output	

5. Functional Description

Figure 5-1. DAC Functional Diagram

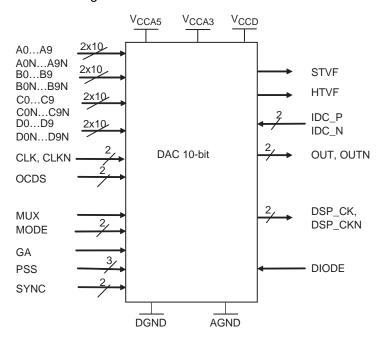


Table 5-1. Functions Description

Name	Function	Name	Function
V _{CCD}	3.3V Digital Power Supply	CLK	In-phase Master clock
V _{CCA5}	5.0V Analog Power Supply	CLKN	Inverted phase Master clock
V _{CCA3}	3.3V Analog Power Supply	DSP_CK	In-phase Output clock
DGND	Digital Ground	DSP_CKN	Inverted phase Output clock
AGND	Analog ground (for analog supply reference)	PSS[02]	Phase shift select
A[90]	In-phase digital input Port A	GA	Gain Adjust
A[90]N	Inverted phase digital input Port A	MUX	MUX Selection
B[90]	In-phase digital input Port B	MODE[01]	DAC Mode: NRZ, RTZ, NRTZ, RF
B[90]N	Inverted phase digital input Port B	STVF	Setup time Violation flag
C[90]	In-phase digital input Port C	HTVF	Hold time Violation flag
C[90]N	Inverted phase digital input Port C	IDC_P, IDC_N	Input data check
D[90]	In-phase digital input Port D	OCDS[01]	Output Clock Division factor Selection (by 4 or 8)
D[90]N	Inverted phase digital input Port D	Diode	Diode for temperature monitoring
OUT	In-phase analog output	SYNC/SYNCN	Synchronization signal (Active High)
OUTN	Inverted phase analog output		

5.1 DSP Output Clock

The DSP output clock DSP, DSPN is an LVDS signal which is used to synchronize the FPGA generating the digital patterns with the DAC sampling clock.

The DSP clock frequency is a fraction of the sampling clock frequency. The division factor depends on OCDS settings. The DSP clock frequency is equal to (sampling frequency / [2N*X]) where N is the MUX ratio and X is the output clock division factor, determined by OCDS[0..1] bits.

For example, in a 4:1 MUX ratio application with a sampling clock of 3 GHz and OCDS set to "00" (ie. Factor of 1), the input data rate is 750 MSps and the DSP clock frequency is 375 MHz.

This DSP clock is used in the FPGA to control the digital data sequencing. Its phase can be adjusted using the PSS[2:0] bits (refer to Section 5.4 on page 21) in order to ensure a proper synchronization between the data coming to the DAC and the sampling clock.

The HTVF and STVF bits should be used to check whether the timing between the FPGA and the DAC is correct. HTVF and STVF bits will indicate whether the DAC and FPGA are aligned or not. PSS bits should then be used to shift the DSP clock and thus the input data of the DAC, so that a correct timing is achieved between the FPGA and the DAC.

Important note: Maximum supported sampling frequency when using DSP to clock digital data is 2.1 Gsps on EV10DS130B. Please refer to application note AN1141 to use EV10DS130B at sampling frequency beyond 2.1 GHz.

5.2 Multiplexer

Two multiplexer ratio are allowed:

- 4:1 which allows operation at full sampling rate (ie. 3 GHz)
- 2:1 which can only be used up to 1.5 GHz sampling rate

Label	Value	Description
MILLY	0	4:1 mode
MUX	1	2:1 mode

In 2:1 MUX ratio, the unused data ports (ports C and D) can be left open.

5.3 MODE Function

Label	Value	Description	Default Setting (Not Connected)
	00	NRZ mode	
MODELLOI	01	Narrow RTZ (a.k.a. NRTZ) mode	11
MODE[1:0]	10	RTZ Mode (50%)	RF mode
	11	RF mode	

The MODE function allows choosing between NRZ, NRTZ, RTZ and RF functions. NRZ and narrow RTZ should be chosen for use in 1st Nyquist zone while RTZ should be chosen for use in 2nd and RF for 3rd Nyquist zones.

Theory of operation: see following subsections for time domain waveform of the different modes.

Ideal equations describing max available Pout for frequency domain in the four modes are given hereafter, with X = normalized output frequency (that is Fout/Fclock, edges of Nyquist zones are then at X = 0.1/2.1.3/2.2...). Due to limited bandwidth, an extra term must be added to take in account a first order low pass filter.

NRZ mode:

$$Pout(X) = 20 \cdot log_{10} \cdot \left\lceil \frac{|k \cdot sinc(k \cdot \pi \cdot X)|}{0.893} \right\rceil$$

where sinc(x) = sin(x)/x, and k = 1

NRTZ mode:

$$\text{Pout}(\textbf{X}) \,=\, 20 \cdot \text{log}_{10} \cdot \left[\frac{|\textbf{k} \cdot \text{sinc}(\textbf{k} \cdot \boldsymbol{\pi} \cdot \textbf{X})|}{0.893} \right] \hspace{1cm} \textbf{k} \,=\, \frac{\text{Tclk} - T\tau}{\text{Tclk}}$$

where $T\tau$ is width of reshaping pulse, $T\tau$ is about 75ps.

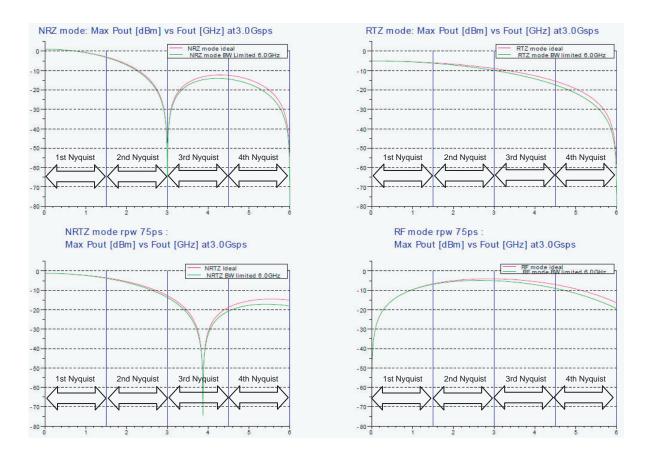
RTZ mode:

$$Pout(X) = 20 \cdot log_{10} \cdot \left[\frac{|k \cdot sinc(k \cdot \pi \cdot X)|}{0.893} \right]$$

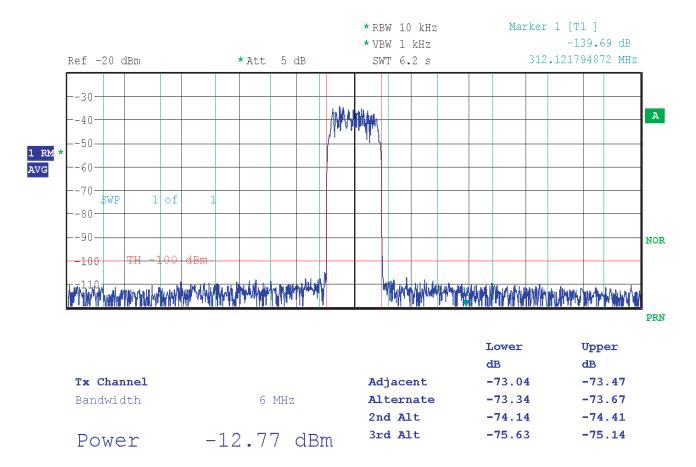
where k is the duty cycle of the clock presented at the DAC input, please note that due to phase mismatch in balun used to convert single ended clock to differential clock the first zero may move around the limit of the 4^{th} and the 5^{th} Nyquist zones. Ideally k = 1/2.

RF mode:

$$Pout(X) = 20 \cdot log_{10} \cdot \left\lceil \frac{k \cdot sinc(\frac{k \cdot \pi \cdot X}{2}) \cdot sin(\frac{k \cdot \pi \cdot X}{2})}{0.893} \right\rceil$$


where k is as per in NRTZ mode.

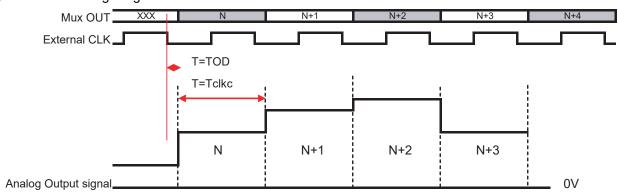
As a consequence:


- NRZ mode offers max power for 1st Nyquist operation
- RTZ mode offers slow roll off for 2nd Nyquist or 3rd Nyquist operation
- RF mode offers maximum power over 2nd and 3rd Nyquist operation
- NRTZ mode offers optimum power over full 1st and first half of 2nd Nyquist zones. This is the most relevant in term of performance for operation over 1st and beginning of 2nd Nyquist zone, depending on the sampling rate the zero of transmission moves in the 3rd Nyquist zone from begin to end when sampling rate increases.

Note in the two following figures: Pink line is ideal equation's result, and green line includes a first order 6 GHz cut-off low pass filter to take in account finite bandwidth effect due to die and package.

Figure 5-2. Max Available Pout[dBm] at Nominal Gain vs Fout[GHz] in the Four Output Modes at 3 GSps, over four Nyquist Zones, Computed for $T\tau = 75$ ps.

Figure 5-3. Max available Pout[dBm] at Nominal Gain vs Fout[GHz] in the Four Output Modes at 2 GSps, over four Nyquist Zones, Computed for T_{τ} = 75 ps



5.3.1 NRZ Output Mode

This mode does not allow for operation in the 2nd Nyquist zone because of the Sinx/x notch.

The advantage is that it gives good results at the beginning of the 1st Nyquist zone (less attenuation than in RTZ architecture), it removes the parasitic spur at the clock frequency (in differential).

Figure 5-4. NRZ Timing Diagram

5.3.2 Narrow RTZ Mode

This mode has the following advantages:

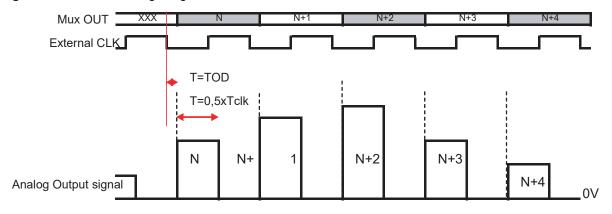
- Optimized power in 1st Nyquist zone
- Extended dynamic through elimination of noise on transition edges
- · Improved spectral purity
- Trade off between NRZ and RTZ

Figure 5-5. Narrow RTZ Timing Diagram

Note: $T\tau$ is independent of Fclock.

5.3.3 RTZ Mode

The advantage of the RTZ mode is to enable the operation in the 2nd zone but the drawback is clearly to attenuate more the signal in the first Nyquist zone.

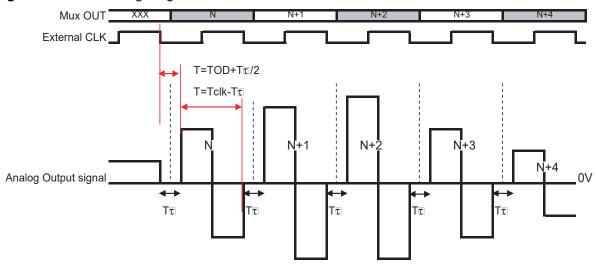

Advantages:

- · Extended roll off of sinc
- Extended dynamic through elimination of hazardous transitions

Weakness:

• By construction clock spur at Fs.

Figure 5-6. RTZ Timing Diagram


5.3.4 RF Mode

RF mode is optimal for operation at high output frequency, since the decay with frequency occurs at higher frequency than for RTZ. Unlike NRZ or RTZ modes, RF mode presents a notch at DC and 2N*Fs, and minimum attenuation for Fout = Fs.

Advantages:

- Optimized for 2nd and 3rd Nyquist operation
- Extended dynamic range through elimination of hazardous transitions.
- · Clock spur pushed to 2.Fs

Figure 5-7. RF Timing Diagram

Note: The central transition is not hazardous but its elimination allows to push clock spur to 2.Fs $T\tau$ is independant of Fclock.

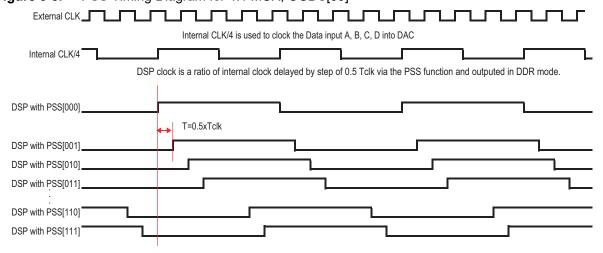
5.4 PSS (Phase Shift Select Function)

It is possible to adjust the timings between the sampling clock and the DSP output clock (which frequency is given by the following formula: Sampling clock / 2NX where N is the MUX ratio, X the output clock division factor).

The DSP clock output phase can be tuned over a range of 3.5 input clock cycles (7 steps of half a clock cycle) in addition to the intrinsic propagation delay between the DSP clock (DSP, DSPN) and the sampling clock (CLK, CLKN).

Three bits are provided for the phase shift function: PSS[2:0].

By setting these 3 bits to 0 or 1, one can add a delay on the DSP clock in order to properly synchronize the input data of the DAC and the sampling clock (the DSP clock should be applied to the FPGA and should be used to clock the DAC digital input data).


Table 5-2.PSS Coding Table

Label	Value	Description
	000	No additional delay on DSP clock
	001	0.5 input clock cycle delay on DSP clock
	010	1 input clock cycle delay on DSP clock
D0010-01	011	1.5 input clock cycle delay on DSP clock
PSS[2:0]	100	2 input clock cycle delay on DSP clock
	101	2.5 input clock cycle delay on DSP clock
	110	3 input clock cycle delay on DSP clock
	111	3.5 input clock cycle delay on DSP clock

In order to determine how much delay needs to be added on the DSP clock to ensure the synchronization between the input data and the sampling clock within the DAC, the HTVF and STVF bits should be monitored. Refer to Section 5.6 on page 24.

Note: In MUX 4:1 mode the 8 settings are relevant, in MUX 2:1 only the four first settings are relevant since the four last ones will yield exactly the same results.

Figure 5-8. PSS Timing Diagram for 4:1 MUX, OCDS[00]

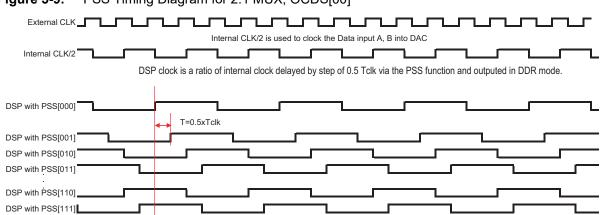


Figure 5-9. PSS Timing Diagram for 2:1 MUX, OCDS[00]

5.5 Output Clock Division Select Function

It is possible to change the DSP clock internal division factor from 1 to 2 with respect to the sampling clock/2N where N is the MUX ratio. This is possible via the OCDS "Output Clock Division Select" bits.

OCDS is used to obtain a synchronisation clock for the FPGA slow enough to allow the FPGA to operate with no further internal division of this clock, thus its internal phase is determined by the DSP clock phase. This is useful in a system with multiple DACs and multiple FPGAs to guarantee deterministic phase relationship between the FPGAs after a synchronisation of all the DACs.

Table 5-3. OCDS[1:0] Coding Table

Label	Value	Description
	00	DSP clock frequency is equal to the sampling clock divided by 2N
0000 [4.0]	01	DSP clock frequency is equal to the sampling clock divided by 2N*2
OCDS [1:0]	10	Not allowed
	11	Not allowed

Figure 5-10. OCDS Timing Diagram for 4:1 MUX

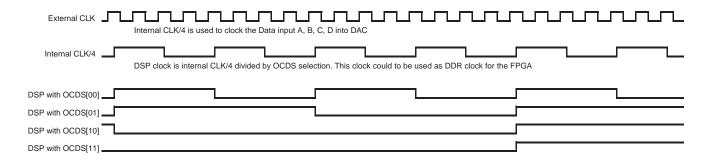
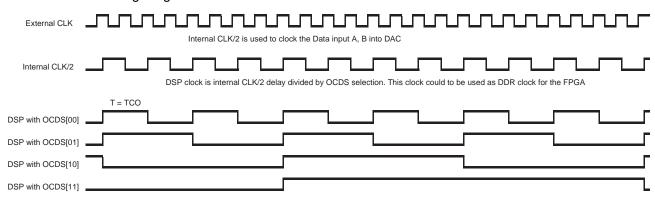
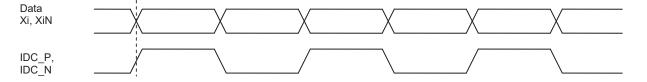



Figure 5-11. OCDS Timing Diagram for 2:1 MUX

5.6 Synchronization FPGA-DAC: IDC_P, IDC_N, HTVF and STVF Functions

IDC_P, IDC_N: Input Data check function (LVDS signal).


HTVF: Hold Time Violation Flag. (cmos3.3V signal)

STVF: Setup Time Violation Flag. (cmos3.3V signal)

IDC signal is toggling at each cycle synchronously with other data bits. It should be considered as a DAC input data that toggles at each cycle.

This signal should be generated by the FPGA in order the DAC to check in real-time if the timings between the FPGA and the DAC are correct.

Figure 5-12. IDC Timing vs Data Input

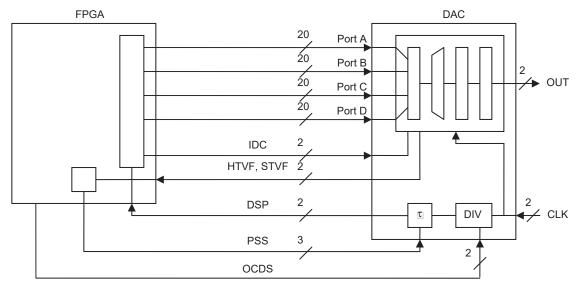

The information on the timings is then given by HTVF, STVF signals (flags).

Table 5-4. HTVF, STVF Coding Table

Label	Value	Description		
HTVF	0	SYNCHRO OK		
nivr	1	Data Hold time violation detected		
CT)/F	0	SYNCHRO OK		
STVF	1	Data Setup time violation detected		

During Monitoring STVF indicates setup time of data violation (Low -> OK, High -> Violation), HTVF indicates hold time of data violation (Low -> OK, High -> Violation).

Figure 5-13. FPGA to DAC Synoptic

Principle of Operation:

The Input Data Check pair (IDC_P, IDC_N) will be sampled three times with half a master clock period shift (the second sample being synchronous with all the data sampling instant), these three samples will be compared, and depending on the results of the comparison a violation may be signalled.

- Violation of setup time -> STVF is high level
- Violation of hold time -> HTVF is high level

In case of violation of timing (setup or hold) the user has two solutions:

- Shift phase in the FPGA PLL (if this functionality is available in FPGA) for changing the internal timing of DATA and Data Check signal inside FPGA.
- Shift the DSP clock timing (Output clock of the DAC which can be used for FPGA synchronization refer to Section 5.4 on page 21), in this case this shift also shift the internal timing of FPGA clock.

Note: When used, it should be routed as the data signals (same layout rules and same length). if not used, it should be driven to an LVDS low or high level.

For further details, refer to application note AN1087.

5.7 OCDS, MUX Combinations Summary

Table 5-5. OCDS, MUX, PSS Combinations Summary

М	MUX OCDS			PSS Range	Data Rate	Comments	
0		00	DSP clock division factor 8				
0	4.4	01	DSP clock division factor 16	0.4. 7//05.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F-14	Refer to	
0	4:1	10	Not allowed	0 to 7/(2Fs) by 1/(2Fs) steps	Fs/4	Section 5.5	
0		11	Not allowed				
1		00	DSP clock division factor 4				
1	0.4	01	DSP clock division factor 8	0 4- 7//05-> h., 4//05-> -4	F-/0	Refer to	
1	2:1	10 Not allowed		0 to 7/(2Fs) by 1/(2Fs) steps	Fs/2	Section 5.5	
1		11	Not allowed				

Note: Behaviour according to MUX, OCDS and PSS combination is independent of output mode (MODE).

5.8 Synchronization Functions for Multi-DAC Operation

In order to synchronize the timings, a SYNC operation can be generated.

After the application of the SYNC signal the DSP clock from the DAC will stop for a period and after a constant and known time the DSP clock will start up again.

There are two SYNC functions integrated in this DAC:

- a power up reset, which is triggered by the power supplies if the dedicated power up sequence is applied Vccd => Vcca3 => Vcca5;
- External SYNC pulse applied on (SYNC, SYNCN).

The external SYNC is LVDS compatible (same buffer as for the digital input data). It is active high.

Depending on the settings for OCDS, PSS and also the MUX ratio the width of the SYNC pulse must be greater than a certain number of external clock pulses. It is also necessary that the sync pulse be synchronized with the system clock and is an integer number of clock pulses. See application note (ref 1087) for further details.

Figure 5-14. Reset Timing Diagram (4:1 MUX)

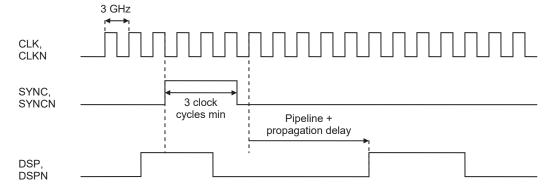
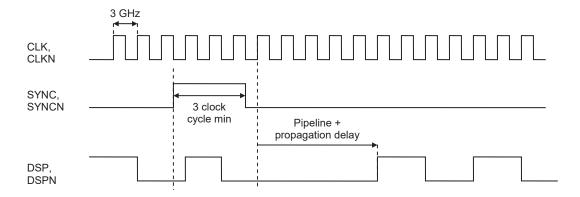



Figure 5-15. Reset Timing Diagram (2:1 MUX)

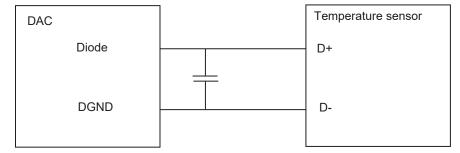
Important note:

For EV10DS130A:

- See erratasheet (ref 1125) for SYNC condition of use.
- SYNC, SYNCN pins have to be driven.

For EV10DS130B:

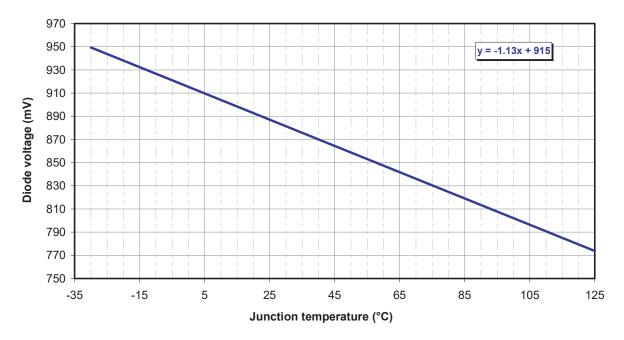
- SYNC, SYNCN pins can be left floating if unused.
- No specific timing constraints (other than T1 and T2) are required.


5.9 Gain Adjust GA Function

This function allows to adjust the internal gain of the DAC to cancel the initial gain deviation. The gain of the DAC can be adjusted by $\pm 11\%$ by tuning the voltage applied on GA by varying GA potential from 0 to V_{CCA3} . GA max is given for GA = 0 and GA min for GA = V_{CCA3}

5.10 Diode Function

A diode is available to monitor the die junction temperature of the DAC. For the measurement of die junction temperature, you could use a temperature sensor.


Figure 5-16. Temperature DIODE Implementation

In characterization measurement a current of 1 mA is applied on the DIODE pin. The voltage across the DIODE pin and the DGND pin gives the junction temperature using the intrinsic diode characteristics below Figure 5-17.

Figure 5-17. Diode Characteristics for Die Junction Monitoring

Junction Temperature Versus Diode voltage for I=1mA

6. PIN Description

Figure 6-1. Pinout View fpBGA196 (Top View)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
А	DGND	В3	B4	B4N	B7	B7N	В9	C9	C7N	C7	C4N	C4	C3	DGND	Α
В	B1	B2	B3N	B5	В6	B8	B9N	C9N	C8	C6	C5	C3N	C2	C1	В
С	NC	B1N	B2N	B5N	B6N	B8N	DGND	DGND	C8N	C6N	C5N	C2N	C1N	NC	С
D	NC	В0	BON	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	C0N	C0	NC	D
Е	A8N	NC	NC	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	NC	NC	D8N	Е
F	A8	A9	A9N	VCCD	VCCD	AGND	AGND	AGND	AGND	VCCD	VCCD	D9N	D9	D8	F
G	A6	A6N	A7	A7N	DGND	AGND	AGND	AGND	AGND	DGND	D7N	D7	D6N	D6	G
Н	A4	A4N	A5	A5N	DGND	AGND	AGND	AGND	AGND	DGND	D5N	D5	D4N	D4	Н
J	A1N	A3	A3N	VCCA3	VC CA3	AGND	AGND	AGND	AGND	VCCA3	VCCA3	D3N	D3	D1N	J
К	A1	A2	A2N	DGND	DGND	AGND	VCCA5	VCCA5	AGND	DGND	DGND	D2N	D2	D1	К
L	NC	A0	A0N	DGND	Diode	VCCA5	VCCA5	VCCA5	VC CA5	DGND	MUX	D0N	D0	NC	L
М	NC	NC	GA	HTVF	STVF	VCCA5	VCCA5	AGND	AGND	MODE0	MODE1	PSS2	NC	NC	М
N	NC	DSPN	IDC_P	SYNCN	CLKN	AGND	AGND	AGND	AGND	AGND	AGND	OCDS1	OCDS0	NC	N
Р	DGND	DSP	IDC_N	SYNC	CLK	AGND	AGND	AGND	OUT	OUTN	AGND	PSS0	PSS1	DGND	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Table 6-1. Pinout Table fpBGA196

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics		
Power Supplies						
V _{CCA5}	K7, K8, L6, L7, L8, L9, M6, M7	5V analogue power supplies Referenced to AGND	N/A			
V _{CCA3}	J4, J5, J10, J11	3.3V analogue power supply Referenced to AGND	N/A			
V _{CCD}	D6, D7, D8, D9, E6, E7, E8, E9, F4, F5, F10, F11	3.3V digital power supply Referenced to DGND	N/A			

EV10DS130AZP/EV10DS130BZP

 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
AGND	F6, F7, F8, F9, G6, G7, G8, G9, H6, H7, H8, H9, J6, J7, J8, J9, K6, K9, M8, M9, N6, N7, N8, N9, N10, N11, P6, P7, P8, P11	Analogue Ground AGND plane should be separated from DGND on the board (the two planes can be connected by 0 ohm resistors)	N/A	
DGND	A1, A14, C7, C8, D4, D5, D10, D11, E4, E5, E10, E11, G5, G10, H5, H10, K4, K5, K10, K11, L4, L10, P1, P14	Digital Ground AGND plane should be separated from DGND on the board (the two planes can be connected by 0 ohm resistors)	N/A	
Clock Signals				
CLK, CLKN	P5, N5	Master sampling clock input (differential) with internal common mode	I	CLKN 50Ω 2.5V CLK 3.75 pF AGND
DSP, DSPN	P2, N2	Output clock (in-phase and inverted phase	0	3.3V DSP, DSPN DSPN DSPN

 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
Analog Outpu	t Signal			
OUT, OUTN	P9, P10	In phase and Inverted phase analogue output signal (differential termination required)	0	VCCA5 50Ω OUT OUTN Current Switches and sources AGND
Digital Input S	Signals		-	
A0, A0N A1, A1N A2, A2N A3, A3N A4, A4N A5, A5N A6, A6N A7, A7N A8, A8N A9, A9N	L2, L3 K1, J1 K2, K3 J2, J3 H1, H2 H3, H4 G1, G2 G3, G4 F1, E1 F2, F3	Differential Digital input Port A Data A0, A0N is the LSB Data A9, A9N is the MSB	I	50Ω 3.75 pF DGND
B0, B0N B1, B1N B2, B2N B3, B3N B4, B4N B5, B5N B6, B6N B7, B7N B8, B8N B9, B9N	D2, D3 B1, C2 B2, C3 A2, B3 A3, A4 B4, C4 B5, C5 A5, A6 B6, C6 A7, B7	Differential Digital input Port B Data B0, B0N is the LSB Data B9, B9N is the MSB	I	50Ω 3.75 pF DGND

 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
C0, C0N C1, C1N C2, C2N C3, C3N C4, C4N C5, C5N C6, C6N C7, C7N C8, C8N C9, C9N	D13, D12 B14, C13 B13, C12 A13, B12 A12, A11 B11, C11 B10, C10 A10, A9 B9, C9 A8, B8	Differential Digital input Port C Data C0, C0N is the LSB Data C9, C9N is the MSB	I	50Ω 3.75 pF DGND
D0, D0N D1, D1N D2, D2N D3, D3N D4, D4N D5, D5N D6, D6N D7, D7N D8, D8N D9, D9N	L13, L12 K14, J14 K13, K12 J13, J12 H14, H13 H12, H11 G14, G13 G12, G11 F14, E14 F13, F12	Differential Digital input Port D Data D0, D0N is the LSB Data D9, D9N is the MSB	I	50Ω 3.75 pF DGND
Control Signa	ls	•	•	
HTVF	M4	Setup time violation flag	O	VDD 100Ω 20Ω $HTVF$ 400Ω $DGND$

 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
STVF	M5	Hold time violation flag	0	VDD 100Ω 20Ω $STVF$ 400Ω $DGND$
IDC_P, IDC_N	N3, P3	Input data check	I	50Ω 3.75 pF DGND
PSS0 PSS1 PSS2	P12 P13 M12	Phase Shift Select (PSS2 is the MSB)	I	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

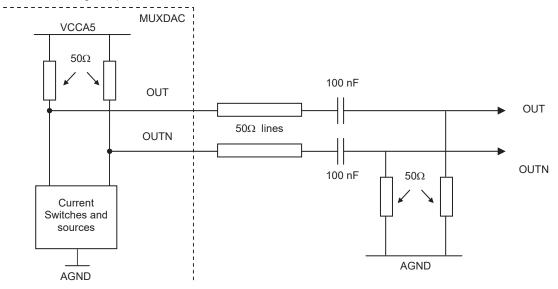
 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
MODE0 MODE1	M10 M11	DAC Mode selection bits	I	VDD 13 kΩ 20 kΩ MODE1, MODE1, 33 kΩ DGND
MUX	L11	MUX selection	I	VDD 13 kΩ 200Ω 33 kΩ DGND
OCDS0 OCDS1	N13 N12	Output Clock Division Select = these bits allow to select the clock division factor applied on the DSP, DSPN signal.	I	OCDS0, OCDS1 OCDS1 OCDS1 OCDS1 OCDS1 OCDS1 OCDS1 OCDS1

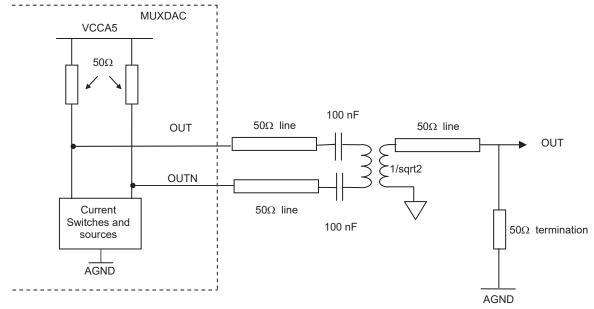
 Table 6-1.
 Pinout Table fpBGA196 (Continued)

Signal name	Pin number	Description	Direction	Equivalent Simplified schematics
SYNC, SYNCN	P4, N4	In phase and Inverted phase reset signal	I	DAC Data and Sync Input Buffer InN 50Ω 3.75 pF DGND
GA	M3	Gain adjust	I	QA 1 $R\Omega$ 300Ω 2.5 $R\Omega$ 4 QE AGND
Diode	L5	Diode for die junction temperature monitoring	I	SUB DGND_DIODE Diode
NC	C1, C14, D1, D14, E2, E3, E12, E13, L1, L14, M1, M2, M13, M14, N1, N14	Not connected to leave floating		

7. Application Information


For further details, please refer to application note 1087.

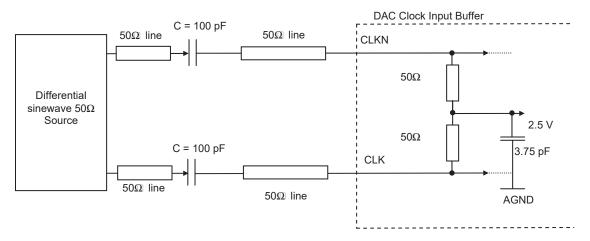
7.1 Analog Output (OUT/OUTN)


The analog output should be used in differential way as described in the figures below.

If the application requires a single-ended analog output, then a balun is necessary to generate a single-ended signal from the differential output of the DAC.

Figure 7-1. Analog Output Differential Termination

Figure 7-2. Analog Output Using a $1/\sqrt{2}$ Balun



Note: The AC coupling capacitors should be chosen as broadband capacitors with a value depending on the application.

7.2 Clock Input (CLK/CLKN)

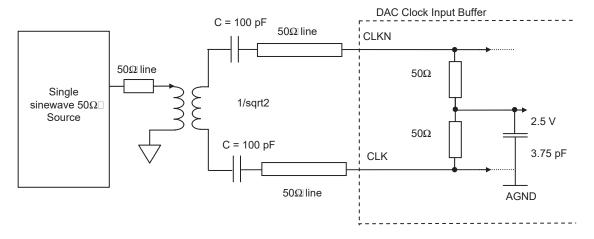
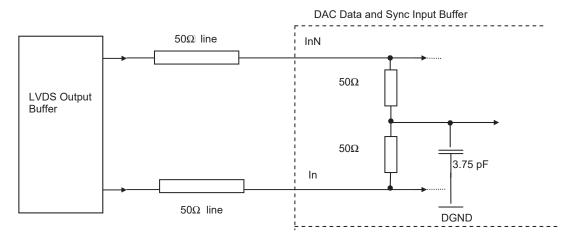

The DAC input clock (sampling clock) should be entered in differential mode as described in Figure 5-9.

Figure 7-3. Clock Input Differential Termination

Note: The buffer is internally pre-polarized to 2.5V (buffer between V_{CC5} and AGND).

Figure 7-4. Clock Input Differential with Balun


Note: The AC coupling capacitors should be chosen as broadband capacitors with a value depending on the application.

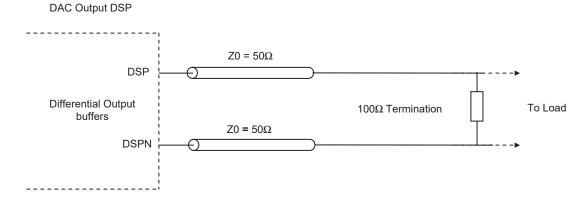
7.3 Digital Data, SYNC and IDC Inputs

LVDS buffers are used for the digital input data, the reset signal (active high) and IDC signal.

They are all internally terminated by $2 \times 50\Omega$ to ground via a 3.75 pF capacitor.

Figure 7-5. Digital Data, Reset and IDC Input Differential Termination

Notes:

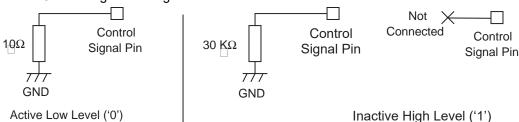

- 1. In the case when only two ports are used (2:1 MUX ratio), then the unused data should be left open (no connect).
- 2. Data and IDC signals should be routed on board with the same layout rules and the same length than the data.
- 3. In the case, the SYNC is not used, it is necessary to bias the SYNC to 1.1V and SYNCN to 1.4V on EV10DS130A

7.4 DSP Clock

The DSP, DSPN output clock signals are LVDS compatible.

They have to be terminated via a differential 100Ω termination as described in Figure 5-11.

Figure 7-6. DSP Output Differential Termination


7.5 Control Signal Settings

The MUX, MODE, PSS and OCDS control signals use the same static input buffer.

Logic "1" = 200 K Ω to Ground, or tied to V_{CCD} = 3.3V or left open

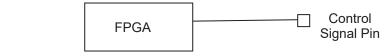

Logic "0" = 10Ω to Ground or Grounded

Figure 7-7. Control Signal Settings

The control signal can be driven by FPGA.

Figure 7-8. Control Signal Settings with FPGA

Logic "1" > V_{IH} or $V_{CCD} = 3.3V$

Logic "0" < V_{IL} or 0V

7.6 HTVF and STVF Control Signal

The HTVF and STVF control signals is a output 3.3V CMOS buffer.

These signals could be acquired by FPGA.

Figure 7-9. Control Signal Settings with FPGA

In order to modify the V_{OL}/V_{OH} value, pull up and pull down resistances could be used, or a potential divider.

7.7 GA Function Signal

This function allows adjustment of the internal gain of the DAC.

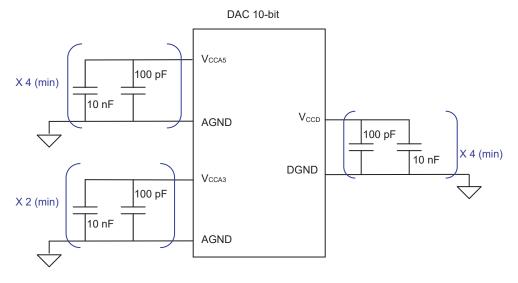
The gain of the DAC can be tuned with applied analog voltage from 0 to V_{CCA3}

This analog input signal could be generated by a DAC control by FPGA or microcontroller.

Figure 7-10. Control Signal Settings with GA

7.8 Power Supplies Decoupling and Bypassing

The DAC requires 3 distinct power supplies:


V_{CCA5}	=	5.0V	(for	the	analog	core)
V_{CCA3}	=	3.3V	(for	the	analog	part)
V 0.0V / f = (1 - 12 - 14 - 1						

 V_{CCD} = 3.3V (for the digital part)

It is recommended to decouple all power supplies to ground as close as possible to the device balls with 100 pF in parallel to 10 nF capacitors. The minimum number of decoupling pairs of capacitors can be calculated as the minimum number of groups of neighbouring pins.

4 pairs of 100pF in parallel to 10 nF capacitors are required for the decoupling of V_{CCA5} . 4 pairs for the V_{CCA3} is the minimum required and finally, 10 pairs are necessary for V_{CCD} .

Figure 7-11. Power Supplies Decoupling Scheme

Each power supply has to be bypassed as close as possible to its source or access by 100 nF in parallel to 22 μ F capacitors (value depending of DC/DC regulators).

Analog and digital ground plane should be merged.

7.9 Power Up Sequencing

For EV10DS130B there is no forbidden power-up sequence, nor power supplies dependency requirement.

For EV10DS130A the following instructions must be implemented:

Power-up sequence:

It is necessary to raise V_{CCA5} power supply within the range 5.20V up to a recommended maximum of 5.60V during at least 1ms at power up. Then the supply voltage has to settle within 500 ms to a steady nominal supply voltage within a range of 4.75V up to 5.25V.

A power-up sequence on V_{CCA5} that does not comply with the above recommendation will not compromise the functional operation of the device. Only the noise floor will be affected.

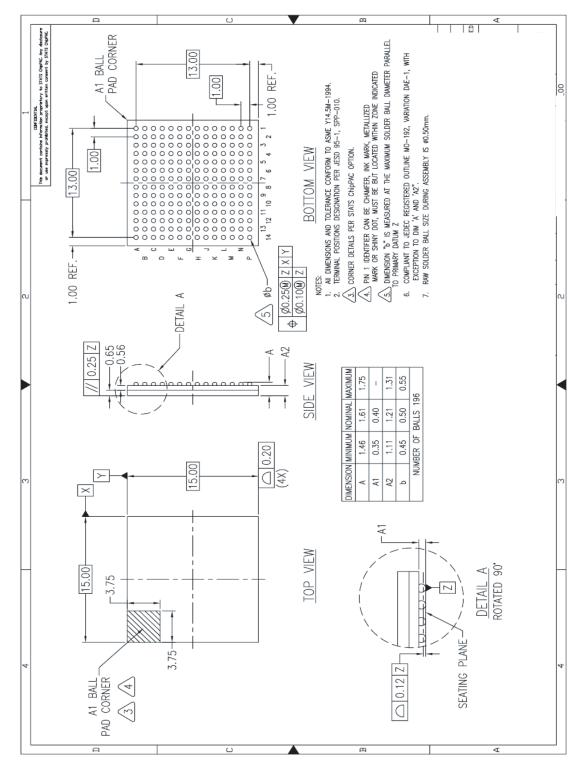
Figure 7-12. Power-up Sequence

The rise time for any of the power supplies (V_{CCA5} , V_{CCA3} and V_{CCD}) shall be \leq 10 ms.

At power-up a SYNC pulse is internally and automatically generated when the following sequence is satisfied: V_{CCD} , V_{CCA3} and V_{CCA5} . To cancel the SYNC pulse at power-up, it is necessary to apply the sequence: V_{CCA5} , V_{CCA3} , V_{CCD} . (V_{CCA3} can not reach 0.5V until V_{CCA5} is greater than 4.5V. V_{CCD} can not reach 0.5V until V_{CCA3} is greater than 3.0V). Any other sequence may not have a deterministic SYNC behaviour. See erratasheet (ref 1125) for specific condition of use relative to the SYNC operation.

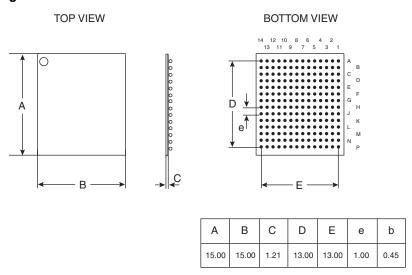
Relationship between power supplies:

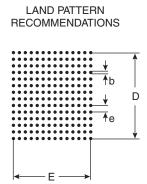
AGND


Within the applicable power supplies range, the following relationship shall always be satisfied $V_{CCA3} \ge V_{CCD}$, taking into account AGND and DGND planes are merged and power supplies accuracy.

An Important Notice at the end of this datasheet addresses availability, warranty, changes, use in critical applications, intellectual property matters and other important disclaimers

AGND


8. Package Information


8.1 fpBGA 196 Outline

8.2 Land Pattern Recommendation

Figure 8-1. Land Pattern Recommendation

9. Thermal Characteristics fpBGA196

9.1 Thermal Resistance

Assumptions:

Still air

Pure conduction

No radiation

Heating zone = 5% of die surface

Rth Junction - bottom of Balls = 13.3°C/W

Rth Junction - board (JEDEC JESD-51-8) = 17.8°C/W

Rth Junction – top of case = 14.5°C/W

Assumptions:

Heating zone = 5% of die surface

Still air, JEDEC condition

Rth Junction – ambient (JEDEC) = 32°C/W

10. Differences between EV10DS130A and EV10DS130B

EV10DS130A and EV10DS130B exhibit the same dynamic performances.

EV10DS130B requires no specific dependency between power supplies nor power up sequences while the EV10DS130A does require specific power up sequences as described in Section 7.9 on page 41.

Maximum supported sampling frequency with DSP clock feature for EV10DS130B is 2.1GHz due to internal jitter. It is however possible to benefit from the EV10DS130B DAC performances up to 3GHz if specific system architecture is implemented. Please refer to application AN1141 for further information.

No SYNC timing constraints (other than T1 T2) are required on EV10DS130B.

As a summary

When using EV10DS130A, please ensure your system fulfills those specific recommendations

- Power Up Sequence (See Section 7.9 on page 41)
- Power supplies dependency (see Section 7.9 on page 41)
- · SYNC pin have to be driven in any case
- Please refer to errata sheet 1125

When using EV10DS130B, please ensure your system fulfills those specific recommendations

• In case sampling frequency is above 2.1 Gsps, please read the AN1141 "Using EV1xDS130B at sampling rate higher than 2.1GSps"

Please refer to application note AN1140 "Replacing EV1xDS130A with EV1xDS130B" for further details

11. Ordering Information

Table 11-1. Ordering Information

Part Number	Package	Lead Finish	Temperature Range	Screening Level	Comments
EV10DS130A					
EV10DS130ACZPY	fpBGA196 RoHS	SAC 305	0°C < Tc, Tj < 90°C	Commercial « C » Grade	
EV10DS130AVZPY	fpBGA196 RoHS	SAC 305	-40°C < Tc, Tj < 110°C	Industrial « V » Grade	
EV10DS130AZPY-EB	fpBGA196 RoHS	NA	Ambient	Prototype	Evaluation board
EVX10DS130AZP	fpBGA196	SnPb 63/37	Ambient	Prototype	Contact sales for availability
EV10DS130AVZP	fpBGA196	SnPb 63/37	-40°C < Tc, Tj < 110°C	Industrial « V » Grade	Contact sales for availability
EV10DS130B					
EVX10DS130BZPY	fpBGA196 RoHS	SAC 305	Ambient	Prototype	
EV10DS130BVZPY	fpBGA196 RoHS	SAC 305	-40°C < Tc, Tj < 110°C	Industrial « V » Grade	
EV10DS130BZPY-EB	fpBGA196 RoHS	NA	Ambient	Prototype	Evaluation board
EV10DS130BVZP	fpBGA196	SnPb 63/37	-40°C < Tc, Tj < 110°C	Industrial « V » Grade	Contact sales for availability

12. Revision History

EV10DS130AZP/EV10DS130BZP

This table provides revision history for this document.

Table 12-1.Revision History

Rev. No	Date	Substantive Change(s)
DS 60S 223704(C)	September 2023	Table 3-8, "Timing Characteristics and Switching Performances," on page 11 Change T1 typical value to 350ps Change T2 typical value to 330ps Modify note 5 to: "The SYNC signal is captured on the falling edge of the master clock and is active high. Refer to Figure 3-3 on page 13. Replace Figure 3-3 on page 13. SYNC Timing Diagram
Table 6-1 on page 29: V _{CCD} pin F10 added Section 5.5 on page 23: OCDS [10] not alloud Introduction and description of EV10DS130 New Section 10. "Differences between EV1 Section 5.1 "DSP Output Clock" on page 16: Section 5.3 "MODE Function" on page 16: Section 5.4 "PSS (Phase Shift Select Function Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Functions for Table 11-1, "Ordering Information," on page 16: Section 5.8 "Synchronization Function		Table 6-1 on page 29: V _{CCD} pin F10 added Section 5.5 on page 23: OCDS [10] not allowed Introduction and description of EV10DS130B New Section 10. "Differences between EV10DS130A and EV10DS130B" on page 44 Section 5.1 "DSP Output Clock" on page 16 updated Section 5.3 "MODE Function" on page 16: equations updated Section 5.4 "PSS (Phase Shift Select Function)" on page 21 updated Section 5.8 "Synchronization Functions for Multi-DAC Operation" on page 26 updated Table 11-1, "Ordering Information," on page 45 added column Lead Finish and added part number EV10DS130AVZP and all EV10DS130B part numbers
1089A	December 2013	Initial revision

Table of Contents

	Main Features	1
	Performances	1
	Applications	1
1	Block Diagram	2
2	Description	2
3	Electrical Characteristics	3
	3.1Absolute Maximum Ratings	3
	3.2Recommended Conditions of Use	4
	3.3Electrical Characteristics	5
	3.4AC Electrical Characteristics	7
	3.5Timing Characteristics and Switching Performances	11
	3.6Explanation of Test Levels	13
	3.7Digital Input Coding Table	13
4	Definition of Terms	14
5	Functional Description	15
	5.1DSP Output Clock	16
	5.2Multiplexer	16
	5.3MODE Function	16
	5.4PSS (Phase Shift Select Function)	21
	5.5Output Clock Division Select Function	23
	5.6Synchronization FPGA-DAC: IDC_P, IDC_N, HTVF and STVF Functions	24
	5.7OCDS, MUX Combinations Summary	26
	5.8Synchronization Functions for Multi-DAC Operation	26
	5.9Gain Adjust GA Function	27
	5.10Diode Function	27
6	PIN Description	29
7	Application Information	36
	7.1Analog Output (OUT/OUTN)	36
	7.2Clock Input (CLK/CLKN)	37
	7.3Digital Data, SYNC and IDC Inputs	38

EV10DS130AZP/EV10DS130BZP

	7.5Control Signal Settings	39
	7.6HTVF and STVF Control Signal	39
	7.7GA Function Signal	39
	7.8Power Supplies Decoupling and Bypassing	40
	7.9Power Up Sequencing	41
8	Package Information	42
	8.1fpBGA 196 Outline	42
	8.2Land Pattern Recommendation	43
9	Thermal Characteristics fpBGA196	43
	9.1Thermal Resistance	43
10	Differences between EV10DS130A and EV10DS130B	44
11	Ordering Information	45
12	Revision History	45
13	Table of Contents	i

IMPORTANT NOTICE

Teledyne e2v provides technical and reliability data, including datasheets, design resources, application and other recommendations ("Resources") "as is" at the date of its disclosure.

All Teledyne e2v Resources are subject to change without notice to improve reliability, function or design, or otherwise.

These Resources are intended for skilled developers designing with Teledyne e2v products. You are solely responsible for a. selecting the appropriate Teledyne e2v products for your application,

b. designing, validating and testing your application, and c. ensuring your application meets applicable standards, and any other safety, security, or other requirements.

Teledyne e2v makes no warranty, representation or guarantee regarding the suitability of these Resources for any particular purpose, or the continuing production of any of its products. Teledyne e2v grants you permission to use these Resources only for the development of an application that uses the Teledyne e2v products described in the Resource. Other reproduction and display of these Resources are not permitted. No license, express or implied, to Teledyne e2vintellectual property right or to any third party intellectual property right is granted by this document or by the conduct of Teledyne e2v.

To the maximum extent permitted by law, Teledyne e2v disclaims (i) any and all liability for any errors, inaccuracies or incompleteness contained in these Resources, or arising out of the application of or use of these Resources, and (ii) any and all express or implied warranties, including those of merchantability, fitness for a particular purpose or non-infringement of intellectual property rights. You shall fully indemnify Teledyne e2v against, any claims, damages, costs, losses, and liabilities arising out of your application of or use of these Resources.

Teledyne e2v's acceptance of any products purchase orders is expressly conditioned upon your assent to Teledyne e2v's General Terms and Conditions of Sale which are stated in any Teledyne e2v's offer and can be found at www.teledyne-e2v.com/about-us/terms-and-conditions/.

The provision of these Resources by Teledyne e2v does not expand or otherwise alter Teledyne e2v's applicable warranties or warranty disclaimers for Teledyne e2v products.

Mailing Address: Teledyne e2v Semiconductors SAS, Avenue de Rochepleine, 38120 Saint Egrève, France.

Telephone: +33 4 76 58 30 00

e-mail: gre-hotline-bdc@teledyne.com

Copyright © 2023, Teledyne e2v Semiconductors SAS

EV10DS130AZP/EV10DS130BZP